首页> 外文会议>Abu Dhabi International Petroleum Exhibition Conference >Petrophysical Evaluation of Shale Gas Reservoirs: A Field Case Study of Marcellus Shale
【24h】

Petrophysical Evaluation of Shale Gas Reservoirs: A Field Case Study of Marcellus Shale

机译:页岩气藏的岩石物理评价:Marcellus Shale的田间案例研究

获取原文

摘要

Successful petrophysical evaluation and stimulation treatments with horizontal drilling and hydraulic fracturing enable the economic development of shale gas reservoirs. Detailed evaluation of shale gas reservoirs before and after stimulation treatments is a prerequisite to increase efficiency and effectiveness of shale gas development. Determination of organic maturity, porosity and original gas in place remains a challenge using traditional petrophysical models due to the complex pore networks and ultra-low permeability of shale. On the basis of a petrophysical model for shale gas reservoirs (Passey et al., 2010), we propose an integrated approach for petrophysical evaluation using analyses of lithology, porosity, fluid saturation, organic maturity, geomechanical properties and initial gas in place. Our petrophysical model for shale gas reservoirs is partitioned into organic matter, clay and non-clay minerals in the solids, adsorbed and free gas, together with capillary-bound, clay-bound and mobile water in the pore space. Vitrinite reflectance is computed in relation to the level of organic maturity (LOM) and kerogen density. Total organic carbon (TOC) is calculated using the Passey method (Passey et al., 1990). Effective porosity of shale gas reservoirs is calculated from algebraic expressions for solid and fluid fractions of the petrophysical model. Compressional and shear slowness logs are used to evaluate the geomechanical properties. Initial gas in place is calculated from free gas and adsorbed gas with porosity, fluid saturation, areal extent, thickness, adsorbed gas storage and organic matter. The methods are successfully applied to a field case in Marcellus shale. TOC (wt.%) calculated by (sonic-density)/resistivity overlay methods for Marcellus Shale are 9.73% and 6.32%, respectively. TOC correlates directly to porosity and adsorbed gas in place occupied within the organic matter. For Marcellus shale, average density and sonic porosities are 6.25% and 3.46%, respectively. The comparison of Young’s modulus and the minimum in-situ stress values between Marcellus shale and adjacent formations are used for the determination of the stimulation interval in the Marcellus Formation. Sonic and density logging suggest 2.22 BCF and 4.10 BCF as technically recoverable reserves with an 8% recovery factor. These results from Marcellus shale provide an improved understanding of economic development of unconventional reservoirs.
机译:卧式钻井和水力压裂的成功岩石物理评估和刺激治疗使页岩气藏的经济发展能够。刺激治疗前后页岩气藏的详细评估是提高页岩气发育效率和有效性的先决条件。由于复杂的孔隙网络和页岩的超低渗透率,在适当的测定有机成熟度,孔隙率和原始气体仍然是使用传统岩石物理模型的挑战。基于Shale气体储层的岩石物理模型(Passey等,2010),使用岩性,孔隙度,流体饱和度,有机成熟度,地质力学性能和原始气体的分析提出了岩石物理评价的综合方法。我们的岩石物理模型的页岩气储层将固体,吸附和自由气体中的有机物质,粘土和非粘土矿物分配在孔隙空间中的毛细血管结合,粘土和移动水中。 vitriinite反射率与有机成熟度(LOM)和基因密度的水平相关。使用Passey方法计算总有机碳(TOC)(Passey等,1990)。来自岩石物理模型的固体和流体分数的代数表达计算页岩气储层的有效孔隙率。压缩和剪切慢速日志用于评估地质力学属性。适当的初始气体是根据自由气体和吸附气体的孔隙率,流体饱和度,面积,厚度,吸附气体储存和有机物质。该方法已成功应用于Marcellus Shale的野外情况。通过(Sonic-Limens)/电阻率叠加方法计算的TOC(WT.%)分别为9.73%和6.32%。 TOC直接与有机物质内占用的孔隙率和吸附的气体相关联。对于Marcellus页岩,平均密度和声波孔隙率分别为6.25%和3.46%。杨氏模量和Marcellus页岩和相邻地层之间的最小原位应力值的比较用于测定Marcellus形成中的刺激间隔。 Sonic和密度测井建议2.22 BCF和4.10 BCF作为具有8%回收率的技术可恢复的储备。 Marcellus Shale的这些结果提供了改善对非传统水库经济发展的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号