首页> 外文会议>Conference on research using extreme light: entering new frontiers with petawatt-class lasers II >Reduction of angular divergence of laser-driven ion beams during their acceleration and transport
【24h】

Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

机译:减少激光驱动离子束在加速度和运输过程中的分歧

获取原文

摘要

Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particle-in-cell simulations (PIC). Namely, various types of targets include flat foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.
机译:激光等离子体物理学是一种大兴趣领域,因为其对基础科学,快速点火,医学(即Holdron治疗),天体物理学,材料科学,粒子加速等的影响。100MeV类质子从短激光脉冲的相互作用加速已经证明了薄的目标。随着激光技术的持续发展,预期更大和更大的能量,因此正在形成专注于各种应用的项目,例如,磁牛酶(ELI多学科应用激光离子加速)。通过超短的激光脉冲加速的离子束的主要特征和关键缺点是它们的大量发散,不适合大多数应用。本文提出了如何减少光束发散的两种方式。首先,通过使用2D粒子内模拟(PIC)研究了不同设计目标目标对梁分歧的影响。即,各种类型的靶标包括扁平箔,弯曲的箔和箔,具有多样的微观结构。获得的结果表明,设计良好的微观结构,即目标中心的孔,可以产生具有最低发散的质子束。此外,与来自扁平箔的梁相比,从弯曲箔释放的粒子束具有较低的发散。其次,另一种用于分歧的方法是使用磁螺线管的方法。通过螺线管的激光加速颗粒的轨迹在简单的MATLAB程序中建模。 PIC模拟的结果用作程序中的输入。通过优化螺线管内的磁场并在装置前面安装孔来控制分歧。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号