首页> 外文会议>SPE Western Regional Meeting >Engineered Completion and Well Spacing Optimization Using a Geologically and Geomechanically Constrained 3D Planar Frac Simulator and Fast Marching Method: Application to Eagle Ford
【24h】

Engineered Completion and Well Spacing Optimization Using a Geologically and Geomechanically Constrained 3D Planar Frac Simulator and Fast Marching Method: Application to Eagle Ford

机译:使用地质和地理系统约束的3D平面FRAC模拟器和快速行进方法设计完成和井间距优化:在Eagle Ford应用

获取原文
获取外文期刊封面目录资料

摘要

Optimizing a well's hydraulic fracture design within a pad development environment is a multi-disciplinary effort and requires a 4-dimensional understanding of the reservoir. This paper presents a workflow that uses an integrated workflow that combines geology, and geomechanics to build a reservoir model which can be interrogated and updated with a geologically and geomechanically constrained grid-based 3D planar frac model and production simulation using a fast marching method. In this case, as applied to an Eagle Ford well to address concerns of completion optimization, production and depletion forecasting, well spacing and well interference. The workflow captures the variability of stresses and rock properties along the wellbore and around it by using multiple geologic and geomechanical approaches. The estimated variability of rock mechanical properties is used as input in a 3D planar frac simulator. An alternative approach to geoengineering a completion, using the differential stress derived from geomechanical simulation that overcomes the limitations of well centric methods, is also illustrated. The frac design results are used as inputs/constraints in a new reservoir simulator that was developed using the Fast Marching Method to estimate drainage area. This allows for a constrained, yet extremely fast estimate of the EUR and resulting pressure depletion, addressing the important concerns of well spacing optimization and prevention of frac hits and well interferences, all in a timely manner. The integrated approach facilitates adaptive frac design which honors in-situ conditions including stress field heterogeneity, stress shadow effects and the pressure depletion from nearby producing wells. The proposed workflow enables greater investment efficiency and promotes field development optimization.
机译:在垫开发环境中优化井的液压骨折设计是一种多学科努力,需要对水库的4维理解。本文介绍了使用集成工作流的工作流程,该工作流结合了地质和地质力学来构建了储层模型,可以使用快速行进方法与地质和地理约束的基于网格的3D平面FRAC模型和生产模拟进行询问和更新。在这种情况下,它适用于Eagle Ford,以满足完成优化,生产和耗尽预测,井间距和干扰良好的担忧。工作流程通过使用多种地质和地质力学方法捕获沿井筒的应力和岩石属性的可变性。岩石力学性能的估计可变性用作3D平面FRAC模拟器中的输入。还示出了使用从地质力学模拟的差分应力克服了克服了以纯粹的主要方法的局限性的差分应力来实现完成的替代方法。 FRAC设计结果用作新的储层模拟器中的输入/约束,该输入/约束是使用快速行进方法来估算排水区域的开发。这允许约束但极快的估计欧元并产生压力消耗,解决了井间距优化和防止FRAC命中和良好干扰的重要问题。综合方法促进了适应性的FRAC设计,其原位条件包括压力场异质性,压力阴影效应和附近生产井的压力消耗。拟议的工作流程使得更大的投资效率和促进现场发展优化。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号