首页> 外文会议>Conference on plasmonics: Metallic nanostructures and their optical properties XIII >Prospect of detection and recognition of single biological molecules using ultrafast coherent dynamics in quantum dot-metallic nanoparticle systems
【24h】

Prospect of detection and recognition of single biological molecules using ultrafast coherent dynamics in quantum dot-metallic nanoparticle systems

机译:量子点金属纳米粒子系统超空间相干动力学检测和识别单一生物分子的展望

获取原文

摘要

Conventional plasmonic sensors are based on the intrinsic resonances of metallic nanoparticles. In such sensors wavelength shift of such resonances are used to detect biological molecules. Recently we introduced ultra-sensitive time-domain nanosensors based on the way variations in the environmental conditions influence coherent dynamics of hybrid systems consisting of metallic nanoparticles and quantum dots. Such dynamics are generated via interaction of these systems with a laser field, generating quantum coherence and coherent exciton-plasmon coupling. These sensors are based on impact of variations of the refractive index of the environment on such dynamics, generating time-dependent changes in the emission of the QDs. In this paper we study the impact of material properties of the metallic nanoparticles on this process and demonstrate the key role played by the design of the quantum dots. We show that Ag nanoparticles, even in a simple spherical shape, may allow these sensors to operate at room temperature, owing to the special properties of quantum dot-metallic nanoparticle systems that may allow coherent effects utilized in such sensors happen in the presence of the ultrafast polarization dephasing of quantum dots.
机译:传统的等离子体传感器基于金属纳米颗粒的内在共振。在这种传感器中,这种共振的波长偏移用于检测生物分子。最近,我们基于环境条件的变化影响了由金属纳米粒子和量子点组成的混合系统的相干动态的杂种系统的变化引入了超敏时域纳米传感器。通过具有激光场的这些系统的相互作用产生这种动态,产生量子相干性和相干的激子等离子体耦合。这些传感器基于对这种动态的环境的折射率的变化的影响,产生QDS发射的时间相关的变化。在本文中,我们研究了金属纳米颗粒的材料特性对该过程的影响,并证明了量子点设计所扮演的关键作用。我们表明,即使在简单的球形中,AG纳米颗粒也可以允许这些传感器在室温下运行,这是由于量子点金属纳米粒子系统的特殊性,这可能允许在存在这种传感器中发生这种传感器的相干效果超快偏振偏移量子点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号