首页> 外文会议>ACS National Meeting Exhibition >HYDROGEN AND LIQUID FUEL CO-GENERATION VIA A CYCLIC REDOX SCHEME
【24h】

HYDROGEN AND LIQUID FUEL CO-GENERATION VIA A CYCLIC REDOX SCHEME

机译:通过循环氧化还原方案氢气和液体燃料共同

获取原文

摘要

Efficient and cost-effective production of clean energy carriers such as hydrogen is of critical importance for sustained growth of the modern economy. Among the various approaches for sustainable hydrogen generation, solar-thermal water-splitting represents a potentially attractive and environmentally friendly option. Typical solar-thermal water-splitting schemes involve cyclic redox reactions of transition metal oxides to indirectly convert solar energy and water into separate streams of hydrogen and oxygen. In its simplest configuration, a solar-thermal water-splitting cycle involves two redox steps. In the first step, solar energy is used to decompose a metal oxide at high temperature. In the subsequent step, the decomposed metal/metal oxide is reoxidized with water, producing hydrogen. The key for the aforementioned process is the metal oxide decomposition step. To date, the endothermic decomposition reaction for most, if not all, solar-thermal water-splitting processes are conducted at temperatures above 1300 °C. Therefore, novel solar-thermal schemes that can effectively promote metal oxide reduction at lower temperatures are highly desired in order to achieve improved efficiency and economic attractiveness for solar-thermal hydrogen generation.
机译:诸如氢如氢的清洁能量载体的高效和经济高效的生产对于持续的现代经济性增长至关重要。在可持续氢收的各种方法中,太阳能 - 热水分裂代表了潜在的吸引力和环保的选择。典型的太阳能 - 热水分裂方案涉及过渡金属氧化物的循环氧化还原反应,间接地将太阳能和水转化为单独的氢气和氧气流。在其最简单的配置中,太阳能热水分裂周期涉及两个氧化还原步骤。在第一步中,太阳能用于在高温下分解金属氧化物。在随后的步骤中,将分解的金属/金属氧化物用水再氧化,产生氢气。上述过程的关键是金属氧化物分解步骤。迄今为止,大多数情况下的吸热分解反应,如果不是全部,则在1300℃以上的温度下进行太阳能水分裂方法。因此,非常需要在较低温度下有效促进金属氧化物降低的新型太阳能 - 热方案,以实现对太阳能热氢产生的提高效率和经济吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号