首页> 外文会议>POWER-GEN International Conference and Exhibition >SUPERCRITICAL CO2 CYCLES FOR GAS TURBINE COMBINED CYCLE POWER PLANTS
【24h】

SUPERCRITICAL CO2 CYCLES FOR GAS TURBINE COMBINED CYCLE POWER PLANTS

机译:用于燃气轮机联合循环发电厂的超临界CO2循环

获取原文
获取外文期刊封面目录资料

摘要

Supercritical carbon dioxide (sCO2) used as the working fluid in closed loop power conversion cycles offers significant advantages over steam and organic fluid based Rankine cycles. Echogen Power Systems LLC has developed several variants of sCO2 cycles that are optimized for bottoming and heat recovery applications. In contrast to cycles used in previous nuclear and CSP studies, these cycles are highly effective in extracting heat from a sensible thermal source such as gas turbine exhaust or industrial process waste heat, and then converting it to power. In this study, conceptual designs of sCO2 heat recovery systems are developed for gas turbine combined cycle (GTCC) power generation over a broad range of system sizes, ranging from distributed generation (~5MW) to utility scale (> 500MW). Advanced cycle simulation tools employing non-linear multivariate constrained optimization processes are combined with system and plant cost models to generate families of designs with different cycle topologies. The recently introduced EPS100 [1], the first commercial-scale sCO2 heat recovery engine, is used to validate the results of the cost and performance models. The results of the simulation process are shown as system installed cost as a function of power, which allows objective comparisons between different cycle architectures, and to other power generation technologies. Comparable system cost and performance studies for conventional steam-based GTCC are presented on the basis of GT-Pro? simulations [2]. Over the full range of systems studied, the sCO2 cycles generated higher power output at a lower cost than the comparable steam systems. Projected operation and maintenance (O&M) costs are used to calculate projected levelized cost of electricity (LCOE) for the competing cycles, demonstrating that sCO2 systems can provide a significant LCOE advantage across the full range of sizes studied.
机译:用作闭环功率转换循环中的工作流体的超临界二氧化碳(SCO2)对蒸汽和有机流体的Quaneine循环具有显着的优势。 Echoon Power Systems LLC开发了几种SCO2循环变体,用于底部和热回收应用。与先前核和CSP研究中使用的循环相比,这些循环在从诸如燃气涡轮机排气或工业过程废热的明智的热源中提取热量,然后将其转化为电力。在这项研究中,SCO2热回收系统的概念设计是用于燃气涡轮机联合循环(GTCC)发电的广泛的系统尺寸,从分布式发电(〜5MW)到实用尺度(> 500MW)。采用非线性多变量约束优化过程的高级循环仿真工具与系统和工厂成本模型相结合,以产生具有不同循环拓扑的设计系列。最近介绍的EPS100 [1],第一个商业规模SCO2热回收引擎用于验证成本和性能模型的结果。仿真过程的结果显示为系统安装成本作为电源的功能,这允许不同的循环架构和其他发电技术之间的客观比较。基于GT-Pro的基于GT-Pro提出了对常规蒸汽的GTCC的可比系统成本和性能研究?模拟[2]。在研究的全系列系统上,SCO2循环以比可比较的蒸汽系统的成本更低的成本产生更高的功率输出。预计的运营和维护(O&M)成本用于计算投影的电力(LCoE)的竞争周期成本,表明SCO2系统可以在所研究的全系列尺寸方面提供显着的LCOE优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号