首页> 外文会议>CIGRE Canada Conference >Hybrid HVDC Transmission with LCC and Multi-Terminal Full-Bridge Modular Multi-level Converter
【24h】

Hybrid HVDC Transmission with LCC and Multi-Terminal Full-Bridge Modular Multi-level Converter

机译:带LCC和多终端全桥模块化多级转换器的混合HVDC传输

获取原文

摘要

This paper investigates the control and operation of an HVDC hybrid topology utilizing a line commutated converter (LCC) and the more recently introduced modular multi-level converter (MMC) technology. The hybrid LCC-MMC system studied in this paper uses the LCC as the rectifier to perform AC to DC conversion, while a multi-terminal connection of full bridge MMCs (FB-MMC) are used as inverters to perform DC to AC conversion. HVDC systems conventionally utilize the same converter technology at both the rectifier and inverter station. Hybrid LCC-MMC systems, which use different converter technologies at each station, is a new concept which has yet to be physically implemented. The hybrid LCC-MMC system leverages the features of both LCC and MMC technologies. The LCC is more economical and has a higher power capacity, while the MMC has a smaller space requirement, provides control of reactive power, and is able to connect to weak AC systems. With the future prospect of DC grids overlaying existing AC grids, the hybrid LCC-MMC topology represents a potential candidate to integrate remote energy sources to the grid. In this paper, a control strategy is proposed for the hybrid LCC-MMC which performs the following: 1.) power flow control by implementing ignition angle control at the rectifier and current control at the inverter; 2.) FB-MMC converter control which includes capacitor voltage control of the MMC sub-modules, DC current control and AC current control; and 3.) DC link fault ride through capability by defining characteristic curves that limit and regulate the DC currents at each station during a fault. The proposed hybrid LCC-MMC utilizing FB-MMCs provides accurate power flow control and power sharing amongst converter stations, while offering the ability to ride through DC-pole-to-ground faults on the HVDC line as verified by PSCAD/EMTDC simulations.
机译:本文研究利用线变换变换器(LCC)和最近引入的模块化多电平转换器(MMC)技术的HVDC混合拓扑的控制和操作。本文所研究的混合LCC-MMC系统使用LCC以执行AC到DC转换整流器,而全桥的MMCs(FB-MMC)的多端子连接被用作反相器来执行DC到AC的转换。 HVDC系统通常利用相同的转换器技术在整流器和逆变器站两者。混合LCC-MMC系统,在每个站使用不同的转换器技术,是至今尚未在物理上实现一个新的概念。混合动力LCC-MMC系统同时利用LCC和MMC技术的特点。该LCC是更经济的,并具有较高的功率容量,而MMC具有较小的空间需求,提供无功功率的控制,并且能够连接到弱交流系统。随着DC的未来前景格架覆盖现有交流电网,混合LCC-MMC拓扑代表远程能源整合到电网的潜在候选。在本文中,一个控制策略,提出的用于混合动力车LCC-MMC,其执行以下操作:1.)通过实施在整流器和逆变器的电流控制的点火角控制功率流控制; 2.)FB-MMC变换器控制其包括MMC子模块,直流电流控制和交流电流控制的电容器电压控制;和3)DC链路故障穿越能力通过定义特性曲线即限制和故障期间调节在每个站的DC电流。利用FB-MMC卡所提出的混合LCC-MMC提供精确的功率流控制和功率共享之间变流器站,同时提供通过DC-极 - 地故障在HVDC线路骑通过PSCAD / EMTDC仿真验证的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号