首页> 外文会议>International Gas Union Research Conference >State of the Art and Perspectives of CO_2 Methanation Process Concepts for Power-to-Gas Applications
【24h】

State of the Art and Perspectives of CO_2 Methanation Process Concepts for Power-to-Gas Applications

机译:CO_2甲烷化工艺概念的现有技术和前景用于电力 - 天然气应用

获取原文

摘要

In a highly interconnected energy system power to gas might play an increasingly significant role. Renewable electric energy can be transformed into a storable and save chemical energy carrier via electrolysis and methanation. The existing gas grid infrastructure can be used for energy storage and transportation. Thermochemical methanation means the conversion of H_2 and CO_2 at about 300 - 550 °Cusually with nickel-based catalysts. Thermochemical methanation processes can be realized in several reactor concepts. Mainly, these can be subdivided by the nature of the support (e. g. honey combs or pellets), the temperature control (e. g. isothermal or adiabatic) or the phases involved in methanation (two phase vs. three phase reactions). Another approach is the biochemical conversion. A microorganism serves as biocatalyst. The bioprocess takes place in aqueous solutions at temperatures between 40 - 70 °C. As limiting step, the transfer of hydrogen from gas phase into the liquid phase is named in literature. Hence, there are several reactor concepts under development aiming to reduce these mass transfer limitations. So far the stirred fermenter is the mostly used reactor. Mainly due to the higher process temperature and the resulting higher reaction velocity, thermochemical methanation requires much lower reactor volumes for a certain feed gas flow than biochemical methanation. However, full CO_2-conversion in a single step thermochemical methanation reactor cannot be achieved due to thermodynamic equilibrium limitations. Therefore, especially for small scale applications biochemical methanation can be advantageous. Both thermochemical and biochemical methanation processes will be figured in the paper. The main characteristics of the processes with advantages and challenges will be discussed as well as the state of development.
机译:在高度互连的能量系统对天然气的功率可能起着越来越重要的作用。可再生电能可以通过电解和甲烷化成可存储的和储存化学能量载体。现有的气体网格基础设施可用于储能和运输。热化学甲烷化是指用镍基催化剂在约300-550°下转化H_2和CO_2。热化学甲烷化过程可以在几种反应堆概念中实现。主要是,这些可以通过支撑的性质(例如蜂蜜梳子或颗粒)细分,温度控制(例如等温或绝热)或甲烷化的阶段(两相与三相反应)。另一种方法是生物化学转换。微生物用作生物催化剂。生物过程在40-70℃的温度下在水溶液中进行。作为限制步骤,将来自气相中的氢转移到液相中以文献命名。因此,在开发中存在几种反应堆概念,旨在减少这些传质限制。到目前为止,搅拌的发酵罐是主要使用的反应器。主要是由于过程温度越高,由此产生更高的反应速度,热化学甲烷化需要比生物化学甲烷化的某种进料气流的低反应器体积。然而,由于热力学平衡限制,单步热学甲烷化反应器中的完整CO_2转化率不能实现。因此,特别是对于小规模应用,生物化学甲烷化可能是有利的。热化学和生化甲烷化方法都将在纸上进行图。将讨论具有优缺点的过程的主要特征以及发展状况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号