首页> 外文会议>International Conference on Greenhouse Gas Technologies >Assessment of Factors Influencing CO2 Storage Capacity and Injectivity in Eastern U.S. Gas Shales
【24h】

Assessment of Factors Influencing CO2 Storage Capacity and Injectivity in Eastern U.S. Gas Shales

机译:影响东方瓦尔斯东部CO2储存能力和注射性因素的评估

获取原文

摘要

Organic-rich gas shales appear to behave similarly to coal and desorb methane while preferentially adsorbing CO2. In addition, the pore volume containing "free" (non-adsorbed) methane is expected to be available for CO2 storage, especially where previous hydraulic fracturing has enhanced injectivity. In theory, CO2 injection into organic-rich gas shale could provide dual benefits of incremental recovery of methane and secure CO2 storage. This paper will report on research to date, sponsored by the U.S. Department of Energy, to assess factors influencing effective CO2 storage capacity and injectivity in the Marcellus Shale in the Eastern United States. Geological characterization was conducted that estimated total gas in-place and theoretical maximum CO2 storage capacity within the Marcellus Shale. Theoretical maximum CO2 storage capacity assumes 100% of methane in-place, either as adsorbed or "free" gas, is replaced by injected CO2. Detailed reservoir characterization was conducted to determine depth, thickness, total organic carbon, effective porosity, apparent gas saturation, CO2 and methane adsorption isotherms, and permeability. Total gas in-place and maximum CO2 storage capacity are extrapolated for the study area where depth to the Marcellus exceeds 915 meters (3,000 feet). Estimated total theoretical maximum CO2 storage capacity is 1.12 million metric tonnes per square kilometer (MMt/km2), of which adsorbed CO2 storage capacity is estimated to be 0.72 MMt/km2. Detailed reservoir simulation was performed to develop a better understanding of the shale characteristics influencing storage capacity and injectivity. The work focuses on areas that may be optimal for CO2 storage due to over-pressured reservoir conditions, attractive shale thickness, and current gas production. A reservoir model was developed based on these data, and reservoir simulation was performed using Advanced Resources International's proprietary reservoir simulator COMET3. Simulated production results were compared to available data within the study area to demonstrate that the reservoir models are representative of existing field conditions. CO2 injection rates are estimated via simulation to predict the incremental volume of methane produced, the total volume of CO2 to be potentially stored, CO2 plume dimensions, and the disposition of CO2 in the reservoir over time.
机译:富含有机的气体Shales似乎与煤和解吸甲烷类似地行事,同时优先吸附CO 2。此外,含有“无吸附”(无吸附)甲烷的孔体积可用于CO 2储存,​​特别是在先前的液压压裂具有增强的注射性的情况下。理论上,CO2注射到有机富含气体页岩中,可以提供甲烷和安全二氧化碳储存的增量回收的双重效果。本文将在美国能源部赞助的迄今为止的研究报告,评估在美国东部Marcellus页岩中影响有效二氧化碳储存能力和注射的因素。进行地质特征,在Marcellus页岩估计估计的总天然气地理和理论最大二氧化碳储存能力。理论最大CO 2储存能力假设100%的甲烷就地,无论是吸附的还是自由“气体,被注入的CO 2取代。进行了详细的储库表征以确定深度,厚度,总碳,有效孔隙率,表观气体饱和度,CO 2和甲烷吸附等温,以及渗透性。对于Marcellus的深度超过915米(3,000英尺)的研究区域,可以将总天然气和最大二氧化碳存储容量推断出来。估计的理论最大二氧化碳储存能力为11.2亿公吨(MMT / KM2),其中吸附的CO2存储容量估计为0.72mmt / km2。进行了详细的储库仿真,以便更好地了解影响储存能力和注射性的页岩特性。该工作侧重于由于过度压力的储层条件,有吸引力的页岩厚度和当前的气体生产而对二氧化碳储存最佳的区域。基于这些数据开发了储层模型,使用高级资源国际专有水库模拟器COMET3进行了储层模拟。将模拟生产结果与研究区域内的可用数据进行比较,以证明储层模型是现有现场条件的代表性。通过模拟估计CO 2注射率以预测产生的甲烷的增量体积,CO 2的总体积待潜在地存储,CO 2羽毛尺寸以及随着时间的推移在储存器中的CO2处置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号