首页> 外文会议>US Rock Mechanics/Geomechanics Symposium >Coupling Distributed Temperature Sensing (DTS) based Wellbore Temperature Models with Microseismic Data for Enhanced Characterization of Hydraulic Fracture Stimulation
【24h】

Coupling Distributed Temperature Sensing (DTS) based Wellbore Temperature Models with Microseismic Data for Enhanced Characterization of Hydraulic Fracture Stimulation

机译:基于分布式温度传感(DTS)基于微震性数据的井眼温度模型,提高了液压断裂刺激的表征

获取原文

摘要

In this paper, the use of microseismic data for calibration and modification of wellbore temperature models will be introduced. Moreover, fracturing fluid distribution obtained using the modified temperature numerical model is coupled with the microseismic field data for several Eagle Ford shale wells to improve hydraulic fracture stimulation characterization. By measuring the temperature change along the wellbore, distributed temperature sensing (DTS) data may provide relative fluid distribution. This information may be used to assess the simple geometry of the hydraulic fractures, the fracture initiation points along the wellbore, wellbore integrity issues,and the effectiveness of isolation tools. With recently published wellbore temperature models, quantitative information about which zones receive the stimulation fluid can be numerically solved. However, DTS measurements and fluid distributions calculated using DTS data are restricted to the wellbore and near wellbore environment. For far field diagnostics of hydraulic fracturing stimulation other measurements are needed, specifically microseismic. By combining these two measurements, a new workflow is created which incorporates both the far field and wellbore measurements to characterize hydraulic fractures, both real-time and after the stimulation job. This workflow is especially useful in reservoirs that are naturally fractured or in wellbores were stress shadowing effects are significant, such as multistage fracturing multiple wells that are in close proximity to each other. In these scenarios the path that the fluid travels may be complex, even in the near wellbore environment. Due to this complexity, fluid distributed calculations based on DTS data may provide misleading results. Using information gained from microseismic, the wellbore temperature models may be modified to increase the reliability of the numerically calculated fluid distributions. The purpose of this paper is to propose how microseismic data may be used to modify the wellbore temperature models, and how stimulation fluid placement determined from the modified models may then be coupled with the microseismic to improve hydraulic fracture stimulation characterization.
机译:本文将介绍使用微震数据进行校准和改性井眼温度模型。此外,使用改进的温度数值模型获得的压裂流体分布与多个Eagle Ford页岩井的微震场数据相结合,以改善液压断裂刺激表征。通过测量沿井筒的温度变化,分布式温度感测(DTS)数据可以提供相对流体分布。该信息可用于评估液压骨折的简单几何形状,沿井筒,井筒完整性问题的断裂引发点以及隔离工具的有效性。利用最近发表的井眼温度模型,可以在数值上解决有关该区域接收刺激流体的定量信息。然而,使用DTS数据计算的DTS测量和流体分布限制在井筒和井眼环境附近。对于液压压裂刺激的远场诊断,需要其他测量,特别是微震。通过组合这两种测量,创建了一种新的工作流程,该工作流程包括远场和井筒测量,以表征液压骨折,既有实时和刺激工作。该工作流程在天然裂缝或井筒中的储存器中特别有用的是应激阴影效果是显着的,例如多级压裂彼此密切接近的多个孔。在这些场景中,即使在近井眼环境中,流体行进的路径也可能是复杂的。由于这种复杂性,基于DTS数据的流体分布式计算可以提供误导性结果。可以使用从微震中获得的信息,可以修改井筒温度模型以提高数值计算出的流体分布的可靠性。本文的目的是提出微震数据如何用于改变井眼温度模型,以及如何与微动型模型确定的刺激流体放置如何与微震仪联接以改善液压断裂刺激表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号