【24h】

HEAT TRANSFER IN NANOELECTRONICS BY QUANTUM MECHANICS

机译:量子力学纳米电子学中的热传递

获取原文
获取外文期刊封面目录资料

摘要

Today, the transient Fourier heat conduction equation is not considered valid for the derivation of temperatures from the dissipation of Joule heat in nanoelectronics because the dimension of the circuit element is comparable to the mean free path of phonon energy carriers. Instead, the Boltzmann transport equation (BTE) for ballistic transport based on the scattering of phonons within the element is thought to govern heat transfer. However, phonons respond at acoustic frequencies in times on the order of 10 - 100 ps, and therefore the BTE would not have meaning if the Joule heat is conserved by a faster mechanism. Unlike phonons with response times limited by acoustic frequencies, heat transfer in nanoelectronics based on QED induced heat transfer conserves Joule heat in times < 1 fs by the creation of EM radiation at optical frequencies. QED stands for quantum electrodynamics. In effect, QED heat transfer negates thermal conduction in nanoelectronics because Joule heat is conserved well before phonons respond. QED induced heat transfer finds basis in Planck's QM given by the Einstein-Hopf relation in terms of temperature and EM confinement of the atom as a harmonic oscillator. QM stands for quantum mechanics and EM for electromagnetic. Like the Fourier equation, the BTE is based on classical physics allowing the atom in nanoelectronic circuit elements to have finite heat capacity, thereby conserving Joule heat by an increase in temperature. QM differs by requiring the heat capacity of the atom to vanish. Conservation of Joule heat therefore proceeds by QED inducing the creation of excitons (hole and electron pairs) inside the circuit element by the frequency up-conversion of Joule heat to the element's TIR confinement frequency. TIR stands for total internal reflection. Under the electric field across the element, the excitons separate to produce a positive space charge of holes that reduce the electrical resistance or upon recombination are lost by the emission of EM radiation to the surroundings. TIR confinement of EM radiation is the natural consequence of the high surface to volume ratio of the nanoelectronic circuit elements that concentrates Joule heat almost entirely in their surface, the surfaces coinciding with the TIR mode shape of the QED radiation. TIR confinement is not permanent, present only during the absorption of Joule heat. Charge creation aside, QM requires nanoelectronics circuit elements to remain at ambient temperature while dissipating Joule heat by QED radiation to the surroundings. Hot spots do not occur provided the RI of the circuit element is greater than the substrate or surroundings. RI stands for refractive index. In this paper, QED radiation is illustrated with memristors, PC-RAM devices, and 1/f noise in nanowires, the latter of interest as the advantage of QM in avoiding hot spots in nanoelectronics may be offset by the noise from the holes created in the circuit elements by QED induced radiation.
机译:如今,瞬态傅立叶热传导方程不被认为是有效的温度从焦耳热的纳米电子学的散热推导由于电路元件的尺寸足以媲美声子能量载体的平均自由程。相反,基于所述元件内的声子的散射为弹道输运玻尔兹曼输运方程(BTE)被认为是支配热传输。然而,声子在倍声频响应的10的数量级上 - 100ps的,因此,BTE不会意如果焦耳热通过更快的机制是保守的。不同于与由声频限定的响应时间的声子,在基于纳米电子学QED传热引起的热传递蜜饯焦耳热在时间<1个FS通过在光频率的创建EM辐射。 QED代表量子电动动力学。实际上,因为焦耳热声子之前响应保守以及QED传热否定的热传导在纳米电子学。 QED诱导热传递在由温度和原子作为谐振子的EM限制方面爱因斯坦 - 霍普夫关系式给出普朗克QM发现基础。 QM代表量子力学和电磁电磁。像傅立叶方程,BTE是基于经典物理学允许在纳米电子电路元件的原子具有有限的热容量,从而通过增加温度节约的焦耳热。 QM相差需要原子的热容量消失。焦耳热的保护因此通过QED进行由频率上转换的焦耳热的元件的TIR限制频率诱导电路元件内的激子(空穴和电子对)的创建。 TIR代表全内反射。下横跨元件的电场,激子分离,以产生正空间电荷的是减小电阻或在重组通过EM辐射到周围环境中的发射丢失孔。 EM辐射的TIR限制是高表面的自然结果到纳米电子电路元件,在它们的表面几乎完全集中的焦耳热,表面与QED辐射的TIR模式形状一致的体积比。 TIR限制仅在焦耳热的吸收是不是永久性的,本。电荷创建之外,QM需要纳米电子学电路元件保持在环境温度,同时通过QED辐射到周围环境耗散的焦耳热。热点不会发生所提供的电路元件的RI比基板或周围更大。 RI代表折射率。在本文中,QED辐射被示为具有忆阻器,PC-RAM设备,和在纳米线的1 / f噪声,后者的兴趣QM的优点在避免纳米电子学的热点可以通过从在形成的孔中的噪声抵消通过QED电路元件引起的辐射。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号