首页> 外文会议>International conference on hydroscience and engineering >Extreme Storm Surge Prediction Using Hydrodynamic Modelling and Artificial Neural Networks
【24h】

Extreme Storm Surge Prediction Using Hydrodynamic Modelling and Artificial Neural Networks

机译:利用流体动力学建模和人工神经网络的极端风暴浪涌预测

获取原文

摘要

On coastlines with shallow shelf areas (e.g. North Sea), a combination of high tides, storm surges, wind waves and mutual interactions generally represent the major sources of coastal flood risks: The contribution of the mutual interactions between the various components still remains the most unknown, despite the now routine linking of tidal and surge components in the current operational hydrodynamic storm-tide models. In fact, a proper physically-based coupling of all constituents will probably take decades to be implemented in the current operational models due to the highly complex and stochastic nature of the entire storm-tide system. Meanwhile, rather a more pragmatic data-driven approach is required to assess the contributions of these non-linear interactions to the resulting extreme storm-tide. Such a pragmatic approach is proposed, which is based on two types of artificial neural networks (ANNs) models called NARX (Nonlinear AutoRegressive eXogenous inputs): (ⅰ) NARX neural network model to predict the extreme storm-tide (Type-A), (ⅱ) NARX neural network model to nonlinearly correct the numerical storm-tide results from TELEMAC2D and TOMAWAC (Type-B). Ensembles methods are then used to reduce variance and minimize error especially in extreme storm-tide events. The approach was applied for two pilot sites in the North Sea (Cuxhaven and Sylt). The results show that the ensemble models are able to extract the contribution of the nonlinear interaction between the different extreme storm-tide components at both sites by subtracting the results of the hydrodynamic models (linear superposition of storm-tide constituents) from the ensemble results. In most extreme storm-tide events considered in this study, the contribution of the nonlinear interaction resulted in the reduction of the extreme water levels when compared with the linear superposition of extreme storm-tide components. However, under certain conditions, the nonlinear interactions might result in higher storm-tides than the linear superposition (e.g. storm of January 2000 at Cuxhaven and Sylt).
机译:与浅海大陆架地区(如北海),高潮的组合,风暴潮,狂风巨浪和相互交互通常代表沿岸洪水的主要来源海岸线风险:各部件之间的相互交互的贡献仍然是最未知,尽管潮汐和浪涌组件的当前运行流体力学风暴潮款现在例程链接。事实上,在当前的操作模式来实现,由于整个风暴潮系统的高度复杂和随机性所有成分的适当的物理为基础的耦合可能需要几十年。与此同时,而需要更实用的数据驱动的方法来评估这些非线性交互作用的向所得极端风暴潮的贡献。这种务实的态度,提出了一种基于两种人工神经网络(人工神经网络)模型称为NARX(非线性自回归外部输入):(ⅰ)NARX神经网络模型来预测极端风暴潮(A型), (ⅱ)NARX神经网络模型从TELEMAC2D和TOMAWAC(B型)非线性正确数值风暴潮结果。然后合奏方法来减少差异,尤其是在极端的风暴潮事件,最大限度地减少错误。应用在北海(库克斯港和叙尔特岛)两个试点地区的做法。该结果表明,该合奏模型能够通过减去流体动力学模式的从合奏结果的结果(风暴潮成分的线性叠加)提取不同极端风暴潮组件之间的非线性相互作用的两个站点的贡献。在本研究中考虑最极端的风暴潮事件,当极端风暴潮组件的线性叠加相比,非线性相互作用的贡献导致极端水位的下降。然而,在某些条件下,非线性的相互作用可能会导致较高的风暴潮比线性叠加(在Cuxhaven的和Sylt的2000年1月的例如风暴)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号