首页> 外文会议>Joint AIAA/ASME thermophysics and heat transfer conference >The Effect of Noncondensables on Convection in Binary-Fluid Coolants
【24h】

The Effect of Noncondensables on Convection in Binary-Fluid Coolants

机译:非透露物对二元流体冷却剂对流的影响

获取原文

摘要

Marangoni convection in a liquid layer subject to a horizontal temperature gradient due to variations in the surface tension at the liquid-vapor interface and confined in a rectangular enclosure is a basic problem of heat transfer and fluid mechanics, with applications in evaporative cooling. In general, surface tension increases as temperature decreases, giving rise to thermocapillary stresses that drive liquid coolant away from hot regions. In a volatile binary-fluid mixture, however, the two components can be chosen so that the surface tension of the mixture increases as temperature increases due to differential evaporation, giving rise to solutocapillary stresses that can drive liquid instead towards hot regions, and hence oppose the thermocapillary stresses. It is of course well-known that noncondensables suppress phase change, in particular condensation. Yet there have been few, if any, studies of how noncondensables affect the Marangoni convection of volatile binary fluids in a confined geometry, where evaporation and condensation must balance. An experimental study was therefore performed of Marangoni convection in a layer of methanol-water (MeOH-H_2O) confined in a sealed rectangular cuvette. The cuvette was symmetrically heated on one end and cooled on the other end using Peltier devices, giving temperature differences of ~6 °C over a horizontal distance of 4.9 cm, and two-dimensional, two-component particle-image velocimetry (2D-2C PIV) was used to measure the velocity fields in this steady flow. The studies focus on convection in liquid layers with a depth of ~0.3 cm (vs. a test cell height of 1 cm), and how this flow is affected by changing the relative concentration of noncondensables (i.e., air) in the gas space above the liquid. The results suggest that changing the concentration of noncondensables, which also has a marked effect on the pressure, in the gas space, can be used to "adjust" the relative importance of solutocapillary and thermocapillary stresses.
机译:由于液 - 蒸汽界面处的表面张力的变化并且在矩形外壳中狭窄而受水平温度梯度的液体层中的Marangoni对流是传热和流体力学的基本问题,在蒸发冷却中的应用。通常,表面张力随着温度降低而增加,从而产生驱动液体冷却剂远离热区域的热量应力。然而,在挥发性二进制流体混合物中,可以选择两种组分,使得混合物的表面张力随着差异蒸发而增加的温度升高而增加,从而引起可以驱动液体朝向炎热区域的溶剂菌应力,因此反对热毛细管应力。当然众所周知,非致力缩小的抑制相变,特别是冷凝。然而,如果有的话,虽然有任何研究,但是研究了如何影响狭窄的几何形状中挥发性二进制流体的Marangoni对流,其中蒸发和冷凝必须平衡。因此,在密封的矩形比色皿中狭窄的甲醇 - 水(MeOH-H_2O)层中的Marangoni对流进行实验研究。将比色杯在一端对称地加热,并使用帕尔贴装置冷却的在另一端,赋予〜6℃,在一个水平4.9厘米的距离,和二维的温度差,双组分粒子图像测速(2D-2C PIV)用于测量该稳定流动中的速度场。研究专注于液体层中的对流,深度为约0.3cm(试验单元高度为1cm),以及如何通过改变上方气体空间中的非通胶(即空气)的相对浓度来影响该流动的影响液体。结果表明,在气体空间中改变对压力的显着影响的非碳脂化物的浓度可用于“调节”溶剂菌和热毛细管应力的相对重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号