首页> 外文会议>Joint AIAA/ASME thermophysics and heat transfer conference;AIAA aviation forum >The Effect of Noncondensables on Convection in Binary-Fluid Coolants
【24h】

The Effect of Noncondensables on Convection in Binary-Fluid Coolants

机译:非冷凝物对二元流体冷却器对流的影响

获取原文

摘要

Marangoni convection in a liquid layer subject to a horizontal temperature gradient due to variations in the surface tension at the liquid-vapor interface and confined in a rectangular enclosure is a basic problem of heat transfer and fluid mechanics, with applications in evaporative cooling. In general, surface tension increases as temperature decreases, giving rise to thermocapillary stresses that drive liquid coolant away from hot regions. In a volatile binary-fluid mixture, however, the two components can be chosen so that the surface tension of the mixture increases as temperature increases due to differential evaporation, giving rise to solutocapillary stresses that can drive liquid instead towards hot regions, and hence oppose the thermocapillary stresses. It is of course well-known that noncondensables suppress phase change, in particular condensation. Yet there have been few, if any, studies of how noncondensables affect the Marangoni convection of volatile binary fluids in a confined geometry, where evaporation and condensation must balance. An experimental study was therefore performed of Marangoni convection in a layer of methanol-water (MeOH-H_2O) confined in a sealed rectangular cuvette. The cuvette was symmetrically heated on one end and cooled on the other end using Peltier devices, giving temperature differences of ~6 °C over a horizontal distance of 4.9 cm, and two-dimensional, two-component particle-image velocimetry (2D-2C PIV) was used to measure the velocity fields in this steady flow. The studies focus on convection in liquid layers with a depth of ~0.3 cm (vs. a test cell height of 1 cm), and how this flow is affected by changing the relative concentration of noncondensables (i.e., air) in the gas space above the liquid. The results suggest that changing the concentration of noncondensables, which also has a marked effect on the pressure, in the gas space, can be used to "adjust" the relative importance of solutocapillary and thermocapillary stresses.
机译:由于在液体-蒸汽界面处的表面张力的变化而在水平方向上受温度限制的液态层中的Marangoni对流是传热和流体力学的基本问题,在蒸发冷却中得到应用。通常,表面张力随着温度的降低而增加,从而产生热毛细管应力,从而驱使液体冷却剂离开高温区域。但是,在挥发性二元流体混合物中,可以选择这两种成分,以使混合物的表面张力随着温度的升高(由于差异蒸发而增加)而增加,从而产生溶质毛细管应力,该应力会驱使液体向热区流动,从而产生反作用。热毛细管应力。当然众所周知,不可冷凝物抑制相变,特别是冷凝。然而,很少有关于不凝结物如何影响受限几何形状中挥发性二元流体的Marangoni对流的研究(如果有的话),在此情况下蒸发和凝结必须平衡。因此,在密闭矩形比色皿中的甲醇-水(MeOH-H_2O)层中进行了Marangoni对流的实验研究。使用Peltier装置将比色皿的一端进行对称加热,另一端进行冷却,在4.9 cm的水平距离上产生约6°C的温差,并进行二维,两成分的颗粒图像测速(2D-2C PIV)用于测量此稳定流中的速度场。研究集中在深度约0.3 cm(相对于测试室高度为1 cm)的液体层中的对流,以及如何通过改变上方气体空间中不可冷凝物(即空气)的相对浓度来影响这种流动。液体。结果表明,改变不凝性气体的浓度(对气体空间中的压力也有显着影响)可用于“调整”溶质毛细管应力和热毛细管应力的相对重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号