首页> 外文会议>International Symposium on Impact Engineering >Mechanical Behavior of Polycrystalline Aluminum Under Penetration with Extremely Large Loading Rates via Molecular Dynamics Simulation
【24h】

Mechanical Behavior of Polycrystalline Aluminum Under Penetration with Extremely Large Loading Rates via Molecular Dynamics Simulation

机译:通过分子动力学仿真极大的加载率渗透下多晶铝的机械性能

获取原文

摘要

In this study, polycrystalline aluminum nano-scale thin sheets are constructed by sputter deposition simulations with the molecular dynamics (MD) simulation. Subsequently, the penetration problem of a conical rigid projectile moving through the aluminum thin sheet is simulated by the MD technique. The MD simulations adopted the interatomic potential of a tight-binding type. During the deposition simulation, in order to include the ion-ion interactions, the pair-wise Moliere potential was adopted to model the interaction between working gas argon and deposited atoms. The as-deposited films did not show clear grain boundaries, but after thermal annealing, grains grow and form nanocrystalline structure with a grain size of 8 nm. The thin sheets consisted of the face-centered cubic phases of crystal unit cells, separated by grain boundaries. For the penetration simulations, four velocities were chosen 10~2, 10~3, 10~4 and 10~5 m/s. The first two velocities are called high velocity case and the rest two velocities are the hypervelocity case. Our results show that, as the penetration rate increases, more stresses are required to move the projectile through the Al film due to temperature effects from the high velocity to hypervelocity case. In addition, defects, such as dislocations, increase during the projectile penetration. In the high velocity case, the penetrated hole in the film may be recovered, but not in the hypervelocity case. The temperature difference increased in the hypervelocity case is significantly than that in the high velocity case.
机译:在该研究中,通过具有分子动力学(MD)模拟的溅射沉积模拟构造多晶铝纳米级薄板。随后,通过MD技术模拟了通过铝薄板移动的锥形刚性射弹的穿透问题。 MD模拟采用紧密结合类型的外部组潜力。在沉积模拟期间,为了包括离子离子相互作用,采用了一对摩利龙电位来模拟工作气体氩和沉积原子之间的相互作用。沉积的薄膜没有显示出透明的晶界,但在热退火后,晶粒生长并形成颗粒尺寸为8nm的纳米晶体结构。薄板由晶体单元电池的面为中心的立方相,由晶界分离。对于渗透模拟,选择了四个速度10〜2,10〜3,10〜4和10〜5 m / s。前两个速度被称为高速箱,其余两个速度是超型案例。我们的研究结果表明,随着穿透速率的增加,由于高速度与超细壳体的温度效应,需要更多的压力来通过Al膜移动射弹。此外,缺陷(例如位错)在射弹渗透期间增加。在高速壳体中,可以回收膜中的穿透孔,但不在超细壳体中。超高速案例中的温度差异显着于高速案例中的温度差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号