首页> 外文会议>ASME International Conference on Micro/Nanoscale Heat and Mass Transfer >EXPERIMENTAL STUDY ON AL_2O_3/H_2O NANOFLUID FLOW BOILING HEAT TRANSFER UNDER DIFFERENT PRESSURES
【24h】

EXPERIMENTAL STUDY ON AL_2O_3/H_2O NANOFLUID FLOW BOILING HEAT TRANSFER UNDER DIFFERENT PRESSURES

机译:不同压力下Al_2O_3 / H_2O纳米流体沸腾热传递的实验研究

获取原文

摘要

In present work, Al_2O_3/H_2O nanofluid was prepared by ultrasonic oscillation. Furthermore, nanofluid flow boiling heat transfer in a vertical cube is experimentally studied, with 0.1% and 0.5% volume concentration and 20nm diameter. Some factors are under consideration, including heat flux on the heating surface (48~289kW·m~(-2)), pressure (0.2~0.8MPa) and mass flow rate (400~1100 kgm~(-2)s~(-1)). The results confirm that the flow boiling heat transfer of Al_2O_3/H_2O nanofluid is improved mostly about 86% compared with pure water. And the average Nusselt number enhancement rate of nanofluid compared with deionized water is 35% in the range of this work. Moreover, the heat transfer capacity of nanofluid increase with the heat flux on the heating surface, pressure and the volume concentration of nanoparticle. It is proved that nanoparticle deposited on the heating surface by SEM observations, and TEM observations for nanoparticle confirm that nanoparticle have not obviously changed after boiling. In addition, the enhancement rate of nanofluid flow boiling heat transfer capacity increase with the pressure, and the influence of mass flow rate is negligible. In conclusion, this work is a supplement for nanofluid flow boiling heating transfer, especially for the influence of pressure.
机译:在目前的工作中,通过超声波振荡制备Al_2O_3 / H_2O纳米流体。此外,实验研究了垂直立方体中的纳米流体沸腾热传递,体积浓度0.1%和0.5%,直径为20nm。有些因素正在考虑,包括加热表面上的热通量(48〜289kw·m〜(2)),压力(0.2〜0.8mpa)和质量流量(400〜1100kgm〜(-2)s〜( -1))。结果证实,与纯水相比,Al_2O_3 / H_2O纳米流体的流动沸腾热传递大部分提高了约86%。与去离子水相比,纳米流体的平均露天篮板数增强率为35%在这项工作的范围内。此外,纳米流体的热传递能力随着加热表面的热通量而增加,压力和纳米颗粒的体积浓度。事实证明,纳米粒子通过SEM观察沉积在加热表面上,以及纳米颗粒的TEM观察结果确认培养后纳米粒子在沸腾后没有明显改变。此外,纳米流体流动沸腾热传递能力的增强率随压力而增加,并且质量流量的影响忽略不计。总之,这项工作是纳米流体流沸腾加热转移的补充,特别是对于压力的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号