首页> 外文会议>ACS National Meeting and Exhibition >PHOTOCATALYTIC REDUCTION OF CO2 OVER A HYBRID PHOTOCATALYST COMPOSED OFWO3 AND GRAPHITIC CARBON NITRIDE (g-C3N4) UNDER VISIBLE LIGHT
【24h】

PHOTOCATALYTIC REDUCTION OF CO2 OVER A HYBRID PHOTOCATALYST COMPOSED OFWO3 AND GRAPHITIC CARBON NITRIDE (g-C3N4) UNDER VISIBLE LIGHT

机译:在可见光下的杂交光催化剂上用杂交光催化剂在杂交光催化剂上减少CO2的光催化还原(G-C3N4)

获取原文

摘要

Carbon dioxide (CO2) is one of the major compounds responsible for global warming, which has now become a global environmental issue because fossil fuel consumption will cause a monotonical increase in the atmospheric CO2 concentration in the future. Therefore, CO2 conversion or energy-oriented use is a priority subject of investigation throughout the world. Effective utilization of clean and abundant solar energy for CO2 conversion will be a promising solution not only for energy issues due to the consumption of natural energy sources but also for many problems caused by greenhouse gases. In order to efficiently utilize solar energy, photocatalytic CO2 reduction to produce useful fuels under visible light, mimicking artificial photosynthesis, is one possible solution. Actually, photocatalytic reaction over semiconductor photocatalysts has the potential to reduce CO2 into hydrocarbons using water as an electron donor. For instance, Inoue and coworkers first reported photocatalytic CO2 reduction in a semiconductor aqueous suspension to produce hydrocarbon fuels such as formaldehyde (HCHO), formic acid (HCOOH), methanol (CH3OH), and methane (CH4). In addition, metal oxide semiconductor photocatalysts including titanium(iV) oxide (TiO2) can produce formic acid (HCOOH), formaldehyde (HCHO), methanol (CH3OH), and methane (CH4) . However, quantum yields for photocatalytic CO2 reduction have been low. The carbon source of the products is not clear. However, most of the photocatalytic CO2 reductions using metal oxide semiconductor photocatalysts are carried out under UV-light irradiation, and the synthetic process and recipe of the photocatalysts are complicated. Therefore, visible-light-driven materials with high efficiency and stability represent a central challenge in the field of photocatalytic CO2 conversion for energy-oriented use.
机译:二氧化碳(CO2)是负责全球变暖的主要化合物之一,现在已成为全球环境问题,因为未来化石燃料消耗将导致大气中的大气CO2浓度的单调增加。因此,二氧化碳转换或面向能源使用是全世界调查的优先权。有效利用CO 2转换的清洁和丰富的太阳能,这是一个很有希望的解决方案,这不仅是由于天然能源消耗的能源问题,而且对于由温室气体引起的许多问题而言。为了有效地利用太阳能,光催化CO2减少以在可见光下产生有用的燃料,模仿人工光合作用,是一种可能的解决方案。实际上,在半导体光催化剂上的光催化反应具有使用水作为电子给体的水将CO 2减少到烃中。例如,INOUE和COWARKERS首先报道了半导体水性悬浮液中的光催化CO2,以产生烃燃料,例如甲醛(HCHO),甲酸(HCOOH),甲醇(CH 3 OH)和甲烷(CH 4)。另外,包括钛(IV)氧化钛(TiO 2)的金属氧化物半导体光催化剂可以制备甲酸(HCOOH),甲醛(HCHO),甲醇(CH 3 OH)和甲烷(CH 4)。然而,光催化二氧化碳还原的量子产率为低。产品的碳源尚不清楚。然而,在UV光照射下进行使用金属氧化物半导体光催化剂的大部分光催化CO 2减少,并且光催化剂的合成过程和配方复杂。因此,具有高效率和稳定性的可见光导向材料代表了光催化二氧化碳转化领域的中央挑战,用于可致直的能量使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号