首页> 外文会议>E-MRS Symposium D on Advanced Inorganic Materials and Structures for Photovoltaic >Optimization of antireflection multilayer for industrial crystalline silicon solar cells
【24h】

Optimization of antireflection multilayer for industrial crystalline silicon solar cells

机译:工业晶体硅太阳能电池抗反射多层优化

获取原文

摘要

Reflection of the incident photons by the silicon surface is a major source of losses during photovoltaic conversion. However, these losses can be minimized by depositing an antireflection layer, usually silicon nitride SiN_x: H, combined with an appropriate texturing. This layer should also provide a good passivation where a real dilemma can be arising. In contrast the surface passivation gets better with increasing Si content (large optical index for n > 2.3) and the minimum reflectivity was found for small optical index. To achieve this, one first approach consists to use a double antireflective layer with two materials of different refractive index n. Among the materials that are appropriate from the standpoint of physics and technology are SiN_x:H-rich silicon, Oxynitride SiO_Xn_y and silicon oxide SiO_x. To optimize the antireflection multilayer, we have developed a numerical simulation code with Matlab software package where we have used the method of transfer matrix to solve the optical equation. These solutions permit us to plot the optical reflectivity and the absorption versus wavelengths and layer thicknesses. The optical refractive index and thicknesses of considered materials, which allowed us to have the lowest reflection, were used to simulate the electrical properties of the cell with PC1D and Silvaco software. Thus, our results showed the cell efficiency increase by 0.3% and effective reflectivity of 7.4% is obtained with a first oxide layer (n_1=1.5 and d_1=55 nm), and a second layer of silicon nitride (n_2=2.1 and d_2=53 nm) non-encapsulated compared to a reference solar cell (with a SARC SiN). In the case of multilayer non-encapsulated, our optimization has shown that it is possible to increase the efficiency by 0.7% with the refractive index (1.48, 2 and 2.4) and thicknesses (80, 5 and 50) nm.
机译:由硅表面反射光子的反射是光伏转换期间的主要损失来源。然而,通过沉积抗反射层,通常可以最小化这些损失,通常是氮化硅SIN_X:H,与合适的纹理相结合。该层还应该提供良好的钝化,其中可以产生真实的困境。相反,随着Si含量的增加(N> 2.3的大光学索引)而言,表面钝化效果更好,并且发现了小光学索引的最小反射率。为了实现这一点,一个第一方法包括使用具有两种不同折射率n的两种材料的双抗反射层。从物理学和技术的观点来看是适当的材料,是Sin_x:H-富含H的硅,氧氮化物SiO_XN_Y和氧化硅SiO_x。为了优化抗反射多层,我们已经开发了一种使用MATLAB软件包的数值模拟代码,我们使用了传输矩阵的方法来解决光学方程。这些解决方案允许我们绘制光学反射性和吸收与波长和层厚度。所考虑的材料的光学折射率和厚度,使我们具有最低反射的材料,用于模拟电池的电气性能和Silvaco软件。因此,我们的结果表明,通过第一氧化物层(N_1 = 1.5和D_1 = 55nm)和第二层氮化硅(N_2 = 2.1和D_2 = 27%,我们的结果表明,电池效率增加了0.3%,并且有效反射率为7.4%(n_2 = 2.1和d_2 =与参考太阳能电池(具有SARC SIN)相比,不封装53nm。在多层不封装的情况下,我们的优化表明,通过折射率(1.48,2和2.4)和厚度(80,5和50)Nm,可以将效率提高0.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号