首页> 外文会议>SPE Canadian Unconventional Resources Conference >Innovative Method for Connate Water Determination in Core Material Identifies Formation Heterogeneity and Potential Damage Mechanisms
【24h】

Innovative Method for Connate Water Determination in Core Material Identifies Formation Heterogeneity and Potential Damage Mechanisms

机译:核心材料中的生成水别测定的创新方法识别形成异质性和潜在损伤机制

获取原文

摘要

The continued evolution of hydraulic fracturing technology has enabled hydrocarbon production in tight, unconventional reservoirs. This usually requires large amounts of water, injected deep underground, which interacts with formations through different pathways. One of the rock-fluid interactions that may occur is salt leaching and mineral dissolution, which mobilizes large amounts of potentially reactive ionic species within the fracture network. Liberation of salt from the reservoir can have a number of consequences, ranging from high salinity flowback water treatment issues to production of geochemical scale that can damage fracture conductivity. An advanced salt analysis method has been designed to characterize the ionic species present in interstitial waters confined within core material, to analyze soluble mineral species that can be mobilized during hydraulic fracturing, and to quantify the scaling potential of reactive ionic species present during treatment and initial production. This method determines connate water chemistry by utilizing a novel solvent extraction procedure that characterizes free and clay bound ions, along with related rock properties (mineralogy, water saturation, and cation exchange capacity). This combined dataset is used to determine the thermodynamically stable composition of the connate water at reservoir conditions, and examine the heterogeneity in chemical composition from the core scale to the reservoir scale. Connate water composition obtained by this method can be utilized for a number of applications, including resistivity log correlation and chemical fingerprinting that can be used with flowback water chemistry to identify fracture propagation. Furthermore, potential chemical incompatibility issues such as scale formation within the target interval or adjacent zones can be identified so that hydraulic fracturing fluid chemistries can be properly treated to eliminate potential incompatibilities. A case study on connate water chemistry in the Montney and Duvernay shale formations is presented using this detailed characterization strategy. The results demonstrate that the presence of key ions, like vanadium and molybdenum in the Montney, can be used to identify the extent of fracture propagation. Because this methodology was also able to identify zones that could produce geochemical scale (e.g. BaS04), hydraulic fracturing fluid chemistries could be tailored to minimize its effect on production.
机译:液压压裂技术的持续演变使得碳氢化合物生产紧密,非常规的水库。这通常需要大量的水,注入地下深处,这通过不同的途径与地层相互作用。可能发生的岩石流体相互作用之一是盐浸出和矿物溶解,其在裂缝网络中致力于大量的潜在反应性离子物质。从储层中解放盐可以具有许多后果,从高盐度流量水处理问题到产生可能损害骨折导电性的地球化学规模。设计了先进的盐分析方法,以表征芯材料内限制在核心材料内的间隙水中的离子物质,以分析可在液压压裂期间动员的可溶性矿物质物种,并定量治疗期间存在的反应性离子物质的缩放电位生产。该方法通过利用新的溶剂萃取程序来确定生成水化学,所述溶剂萃取程序具有自由和粘土结合离子,以及相关岩石性质(矿物学,水饱和度和阳离子交换能力)。该组合数据集用于确定储层条件下的生力学稳定组合物,并从核心规模到储层规模的化学成分中的异质性。通过该方法获得的加入水组合物可用于许多应用,包括可与流水化学一起使用的电阻率对数相关和化学指纹识别以识别断裂繁殖。此外,可以识别诸如目标间隔或相邻区域内的尺度形成的潜在的化学性能不相容问题,以便适当地处理液压压裂流体化学以消除潜在的不相容性。利用该详细表征策略,提出了蒙特尼和杜弗纳蒙特尼和杜弗利页岩形成的案例研究。结果表明,在Montney中存在钒和钼,如钒和钼,可用于识别骨折繁殖的程度。因为这种方法也能够识别可以产生地球化学尺度的区域(例如BAS04),因此可以根据生产的液压压裂流体化学品测量以最小化其对生产的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号