首页> 外文会议>ASME Turbine Technical Conference and Exposition >TURBINE BLADE TIP COOLING WITH BLADE ROTATION PART II: SHROUD COOLANT INJECTION
【24h】

TURBINE BLADE TIP COOLING WITH BLADE ROTATION PART II: SHROUD COOLANT INJECTION

机译:涡轮叶片尖端冷却带叶片旋转部分II:护罩冷却剂注入

获取原文
获取外文期刊封面目录资料

摘要

In this paper, blade-tip cooling is investigated with coolant injection from the shroud alone and a combination of shroud coolant injection and tip cooling. The blade rotates at a nominal speed of 1200 RPM, and consists of a cut back squealer tip with a tip clearance of 1.7% of the blade span. The blade consists of tip holes and pressure side shaped holes, while the shroud has an array of angled holes and a circumferential slot upstream of the rotor section. Different combinations of the three cooling configurations are utilized to study the effectiveness of shroud cooling as a complementary method of cooling the blade tip. The measurements are done using liquid crystal thermography. Blowing ratios of 0.5, 1.0, 2.0, 3.0 and 4.0 are studied for shroud slot cooling and blowing ratios of 1.0, 2.0, 3.0, 4.0 and 5.0 are studied for shroud hole cooling. For cases with coolant injection from the tip, the blowing ratios used are 1.0, 2.0, 3.0 and 4.0. The results show an increase in film cooling effectiveness with increasing blowing ratio for shroud hole cooling. The increased effectiveness from shroud hole cooling is concentrated mainly in the tip-region below the shroud holes and towards the blade suction side and the suction side squealer rim. Slot cooling injection results in increased effectiveness on the blade tip near the blade leading edge up to a maximum blowing ratio, after which the cooling effectiveness decreases with increasing blowing ratio. The combination of the different cooling methods results in better overall cooling coverage of the blade tip with the shroud hole and blade tip cooling combination being the most effective. The level of coolant protection is strongly dependent on the blowing ratio and combination of blowing ratios.
机译:在本文中,通过单独从护罩注入和护罩冷却剂注入和尖端冷却的组合,研究了刀片尖端冷却。刀片以1200rpm的标称速度旋转,并且由截止尖端的尖端间隙组成,尖端间隙为1.7%的刀片跨度。叶片由尖端孔和压力侧形孔组成,而护罩具有成角度的阵列和转子部分上游的圆周槽。三种冷却配置的不同组合用于研究护罩冷却作为冷却叶片尖端的互补方法的有效性。使用液晶热成像进行测量。研究了0.5,1.0,2.0,3.0和4.0的发泡比对于护罩槽冷却,1.0,2.0,3.0,4.0和5.0的吹气比对于护罩孔冷却。对于从尖端注入冷却剂注入的情况下,所用的吹风比为1.0,2.0,3.0和4.0。结果表明,薄膜冷却效果的增加随着护罩孔冷却的增加而增加。护罩孔冷却的效率增加主要集中在护罩孔下方的尖端区域中,朝向叶片吸入侧和吸入侧扣环辋。槽冷却注射导致叶片尖端靠近叶片前沿的效果增加,直到最大吹吹比,之后通过增加吹出比率降低了冷却效果。不同冷却方法的组合导致叶片尖端的较好的整体冷却覆盖,带有护罩孔和叶片尖端冷却组合是最有效的。冷却剂保护水平强烈依赖于吹出比和吹出比的组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号