首页> 外文会议>Asia_Pacific Conference on Engineering Plasticity and its Applications >The Effect of Interatomic Potentials on the Onset of Plasticity in the Molecular Dynamics (MD) Simulation of Nanometric Machining
【24h】

The Effect of Interatomic Potentials on the Onset of Plasticity in the Molecular Dynamics (MD) Simulation of Nanometric Machining

机译:纳米机加工分子动力学(MD)模拟中的间隙电位对塑性效果的影响

获取原文

摘要

The effect of interatomic potentials on the onset of plastic deformation in the nanometric machining of a crystalline diamond tool on a crystalline copper workpiece, was investigated by using the MD simulation. Three potential pairs were used for the copper-copper (workpiece) and the copper-carbon (tool-workpiece interface) atomic interactions. For case 1, the Morse potential was used for both the copper-copper and the copper-carbon interactions; for case 2, the Embedded Atom Method (EAM) potential was used for the copper-copper interactions and the Morse potential was used for the copper-carbon interactions; and for case 3, the EAM potential was used for the copper-copper interactions and the Lennard-Jones (LJ) potential was used for the copper-carbon interactions. The diamond tool was modelled as a deformable body and the Tersoff potential was applied for the carbon-carbon interactions. From the simulation results, pile-up volume and the force ratio appear to indicate the onset of plasticity during the machining. The pile-up volume shows that ploughing starts from 0.25nm, 0.20 and 0.30nm depth of cut for case 1, case 2 and case 3 respectively and the formation of chips starts to occur from the depth of cut of 1.5nm for case 3. The force ratio also indicate the onset of ploughing at different depths of cut from 0.10nm-0.3nm.
机译:通过使用MD模拟研究了在结晶铜工件上纳米机加工中纳米机加工中塑性变形的塑性变形的效果。三个潜在的对用于铜铜(工件)和铜 - 碳(工具 - 工件界面)原子相互作用。对于案例1,摩尔斯潜力用于铜铜和铜 - 碳相互作用。对于壳体2,嵌入的原子法(EAM)电位用于铜 - 铜相互作用,摩尔斯潜力用于铜 - 碳相互作用;对于壳体3,磁铜相互作用用于铜 - 铜相互作用,并且Lennard-Jones(LJ)电位用于铜 - 碳相互作用。金刚石工具被建模为可变形体,并且施加纺织部电位用于碳 - 碳相互作用。从仿真结果,堆积量和力比似乎表明加工过程中的可塑性发作。堆积体积表示,对于壳体1,壳体2和壳体3分别从0.25nm,0.20和0.30nm切割深度开始,芯片2和壳体3开始,从1.5nm的切割深度开始发生芯片。力比还表明在0.10nm-0.3nm的不同深度下犁出的发作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号