首页> 外文会议>International Conference on Acid Rock Drainage >Scaling Geochemical Loads in Mine Drainage Chemistry Modeling: An Empirical Derivation of Bulk Scaling Factors
【24h】

Scaling Geochemical Loads in Mine Drainage Chemistry Modeling: An Empirical Derivation of Bulk Scaling Factors

机译:矿山排水化学建模中的缩放地球化学载荷:散装缩放因子的实证推导

获取原文
获取外文期刊封面目录资料

摘要

The development of water quality predictions for seepage from mine waste facilities is an integral component of the environmental assessment of minesites. Direct scaling of geochemical loads measured by laboratory kinetic tests such as humidity cells relative to the mass of a full-scale mine waste facility will lead to concentration predictions for mine drainage that are unrealistically high for many dissolved constituents. As a result, "scaling factors" are applied to account for discrepancies in parameters such as grain size, temperature and water/rock ratio between the laboratory experiments and the field scale waste rock facilities.In this study, waste dump seepage chemistry data from two minesites are compared to upscaled, representative laboratory test cell leachate data in an attempt to better constrain bulk scaling factors. Additionally, larger scale field experimental data (field bins) were considered as an intermediate scaling step.It was observed that geochemical loads for major ions from the sites are commonly more than two orders of magnitude lower than those predicted by direct scaling of laboratory kinetic test loads, yielding bulk scaling factors of <1%. In these models, many dissolved trace ions that may be of concern in mine drainage (e.g., As, Cu, Cd, Se, etc.) may still be significantly overpredicted if the model is calibrated to major ions, likely as a result of solubility limits and other attenuation mechanisms. Unlike loading rates, concentrations in field bin and waste dump drainage were commonly found to be on the same order of magnitude for both neutral and acidic sites suggesting that geochemical equilibrium may be attained at relatively small scales in waste piles, highlighting the importance of intermediate-scale field experiments.
机译:矿井废物设施渗漏水质预测的发展是Minesites环境评估的一个组成部分。通过实验室动力学测试(例如湿度电池)相对于全规模矿山废物设施的质量的诸如湿度电池测量的地球化学载荷的直接缩放将导致矿井排水的浓缩预测,这对于许多溶解的成分来说是不切实际的高。结果,“缩放因子”被应用于诸如实验室实验与现场规模的晶粒尺寸,温度和水/岩石比等参数中的差异,以及该研究,废物倾倒从两个中渗出化学数据将Minesites与Upcaled进行比较,代表性化学测试细胞渗滤液数据试图更好地限制散装缩放因子。另外,较大的尺度场实验数据(场箱)被认为是中间缩放步骤。观察到来自位点的主要离子的地球化学载荷通常比通过直接缩放的实验室动力学测试所预测的数量级超过两个数量级载荷,产生<1%的散装缩放因子。在这些模型中,如果模型被校准到主要离子,可能仍然是显着的,许多溶解的痕量离子可能仍可能是显着的,这可能仍然显着估计到主要离子,可能是溶解度的结果限制和其他衰减机制。与装载速率不同,常见箱和废物排水中的浓度是对中性和酸性位点的相同数量级,表明可以在废物桩中的相对小的尺度上实现地球化学平衡,突出了中间的重要性 - 规模场实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号