首页> 外文会议>International Conference on Mathematical odels for Engineering Science >TVD and ENO Applications to Supersonic Flows in 2D - Part I
【24h】

TVD and ENO Applications to Supersonic Flows in 2D - Part I

机译:TVD和ENO应用程序在2D中的超音速流动 - 第I部分

获取原文

摘要

In this work, first part of this study, the high resolution numerical schemes of Lax and Wendroff, of Yee, Warming and Harten, of Yee, and of Harten and Osher are applied to the solution of the Euler and Navier-Stokes equations in two-dimensions. With the exception of the Lax and Wendroff and of the Yee schemes, which are symmetrical ones, all others are flux difference splitting algorithms. All schemes are second order accurate in space and first order accurate in time. The Euler and Navier-Stokes equations, written in a conservative and integral form, are solved, according to a finite volume and structured formulations. A spatially variable time step procedure is employed aiming to accelerate the convergence of the numerical schemes to the steady state condition. It has proved excellent gains in terms of convergence acceleration as reported by Maciel. The physical problems of the supersonic shock reflection at the wall and the supersonic flow along a compression corner are solved, in the inviscid case. For the viscous case, the supersonic flow along a compression corner is solved. In the inviscid case, an implicit formulation is employed to marching in time, whereas in the viscous case, a time splitting approach is used. The results have demonstrated that the Yee, Warming and Harten algorithm has presented the best solution in the inviscid shock reflection problem; the Harten and Osher algorithm, in its ENO version, and the Lax and Wendroff TVD algorithm, in its Van Leer variant, have yielded the best solutions in the inviscid compression corner problem; and the Lax and Wendroff TVD algorithm, in its Minmodl variant, has presented the best solution in the viscous compression corner problem.
机译:在这项工作中,本研究的第一部分,即怡,eee,eee,Meee,Meeting和Harten的高分辨率数值方案,eee和harten和Osher的eee,eee和osher的eye -方面。除了LAX和WENDROFF和yee方案之外,这是对称的,所有其他方案都是通量差异分裂算法。所有方案都是在空间中准确的二阶和一阶准时准确。根据有限体积和结构化的配方,以保守和整体形式写入的欧拉和海军 - Stokes方程。采用空间可变的时间步骤程序,目的是加速数值方案的收敛到稳态条件。据Maciel报道,它在收敛加速方面证明了优异的收益。解决了壁的超音速冲击反射的物理问题,沿着压缩拐角的超音速流动求助。对于粘性案例,解决了沿压缩拐角的超音速流动。在托盘案中,采用隐式制剂在时间上行进,而在粘性情况下,使用时间分裂方法。结果表明,eee,升温和哈特算法介绍了缺陷休克反射问题中的最佳解决方案; HARTEN和OSHER算法在其eno版本和LAX和WENDROFF TVD算法中,在VAN Lier Variant中,在IncIscid压缩角问题中产生了最佳解决方案;在其MinModl变体中,LAX和Wendroff TVD算法在粘性压缩角问题中呈现了最佳解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号