首页> 外文会议>Symposium on Dielectric Materials and Metals for Nanoelectronics and Photonics >Aggressive SiGe Channel Gate Stack Scaling by Remote Oxygen Scavenging: Gate-First pFET Performance and Reliability
【24h】

Aggressive SiGe Channel Gate Stack Scaling by Remote Oxygen Scavenging: Gate-First pFET Performance and Reliability

机译:通过远程氧气清除的侵略性SiGe通道栅极堆叠:门 - 首​​先PFET性能和可靠性

获取原文

摘要

We demonstrate that aggressive gate dielectric scaling in hafnium-based high-k/metal gate (HKMG) p-channel metal-oxide-semiconductor field-effect transistors (pFETs) with biaxially strained silicon germanium (SiGe) channels can be achieved in gate-first integration via remote interfacial SiO_2 scavenging by metal-doped titanium nitride gates. We show that an inversion thickness (T_(inv)) of 0.86 nm can be reached, corresponding to an equivalent oxide thickness (EOT) of about 0.45-0.5 nm. We then provide a detailed study of interlayer-scaling-induced pFET threshold voltage increase and hole mobility reduction, and we establish an exponential interlayer thickness dependence of negative bias temperature instability (NBTI), resulting in shrinking reliability margins that will require gate stack optimization or reduced operating voltage. Previously shown to be effective for nFETs, our results demonstrate that remote oxygen scavenging is an attractive scaling option for dual-channel CMOS.
机译:我们证明,在基于铪的高k /金属栅极(HKMG)P沟道金属氧化物 - 半导体场效应晶体管(PFET)中,具有双轴应变硅锗(SiGe)通道的侵略性栅极介电缩放可以在栅极 - 通过金属掺杂钛氮化物栅极通过远程界面SiO_2清除第一集成。我们表明,可以达到0.86nm的反转厚度(T_(INV)),对应于约0.45-0.5nm的等效氧化物厚度(EOT)。然后,我们提供了对层间缩放诱导的PFET阈值电压增加和空穴迁移率降低的详细研究,并且我们建立了负偏置温度不稳定性(NBTI)的指数层间厚度依赖性,从而产生缩小的可靠性边缘,这将需要栅极堆栈优化或者降低工作电压。以前显示为NFET有效,我们的结果表明,远程氧气清除是双通道CMOS的有吸引力的缩放选择。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号