首页> 外文会议>International Workshop on Functional Materials >Influence of Site Occupancy on the Structure, Microstructure and Magnetic Properties of Ternary and Quasi-ternary Alloys of Ni-Mn-Ga
【24h】

Influence of Site Occupancy on the Structure, Microstructure and Magnetic Properties of Ternary and Quasi-ternary Alloys of Ni-Mn-Ga

机译:位点占用对Ni-Mn-Ga三元和准合金结构,微观结构和磁性的影响

获取原文

摘要

A systematic study of the effect of cobalt, selectively substituted for Ni and Mn, in the modulated orthorhombic (7M) Ni_(50)Mn_(29)Ga_(21) alloy has led to interesting correlations between the resultant structure and microstructure. Substitution of Co for Mn resulted in the stabilization of a non-modulated tetragonal (NM) phase at higher Co content and caused suppression of long-range twin deformation leading to sporadic islands within which twin variants were confined. On the other hand, substitution of Co for Ni does not to alter either the superstructural ordering or the long-range twin deformation. A study of the compositional dependence of saturation magnetization measured at 5 K is shown to throw light on the site preference of cobalt and iron atoms substituted in Mn-rich alloys of quasi-ternary Ni-Mn-Ga-(Fe,Co) system. The study reveals that the dopant atoms occupy the regular Mn site, rather than the vacant Ga site, with ferromagnetic exchange relative to the moments on Ni and Mn sub-lattices. These effects are attributed to have their origin in minimizing the stresses generated by the corresponding atomic volume changes incorporated by doping.
机译:在调制的正交(7M)Ni_(50)Mn_(29)Ga_(29)Ga_(21)合金中选择性地取代Ni和Mn的钴,选择性地取代Ni和Mn的效果,这导致了所得结构和微观结构之间的有趣相关性。 CO用于Mn的取代导致在较高的CO含量下稳定非调节的四方(NM)相,并导致抑制导致散氏岛的远程双变形,其内部变体被限制在其中。另一方面,CO用于NI的替代不改变超大序列或远程双变形。显示在5 k下测量的饱和磁化强度的组成依赖性的研究显示在钴和铁原子中取代的准镍氢化合物的富含锰和CO)系统中的富含钴和铁原子的偏光。该研究表明,掺杂剂原子占据常规MN位点,而不是空气的GA位点,相对于Ni和Mn子格子的时刻,具有铁磁交换。这些效果归因于在最小化通过掺杂引起的相应原子体积变化产生的应力来归因于它们的起源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号