首页> 外文会议>Society of Petroleum Engineers Middle East Unconventional Gas Conference and Exhibition >Hydraulic Fracturing Critical Design Parameters in Unconventional Reservoirs
【24h】

Hydraulic Fracturing Critical Design Parameters in Unconventional Reservoirs

机译:液压压裂在非传统水库中的临界设计参数

获取原文

摘要

Horizontal well drilling and hydraulic fracturing have become the enabling technologies for unconventional reservoir development. From tight gas, to oil and gas-producing shales and coal bed methane, all these resources rely on hydraulic fracturing for its commercial viability. The primary goal of the completion in these ultra-low permeability formations is to provide a conductive path to contact as much rock as possible, through the use of multistage hydraulic fractures along a horizontal lateral. Reservoir contact is optimized by defining the extent of the lateral length, the number of stages to be placed in the lateral, the fracture placement technique and job size. Fracture conductivity is determined by the proppant type and size, fracturing fluid system as well as the placement technique. While most parameters are considered in great detail in the completion design, the fracture conductivity receives lesser attention. On one side many feel that in extremely low permeability formations hydraulic fractures act as ‘infinitely conductive features’, even with minimal conductivity. On another side many factors that affect the effective conductivity acting in the hydraulic fracture are poorly understood or overlooked. This can lead to a disappointing outcome with wells producing below the reservoir potential. This paper presents a technique to assess the realistic fracture conductivity at downhole conditions, describe the relationship between conductivity and productivity and its economic implications in proppant selection. The effects of transverse fractures, low areal proppant concentration and flow dynamics, are also considered among other variables. Fracture modeling and actual field results will be presented to illustrate the optimization process. The case histories included in the paper show the successful implementation of this method in shale gas and liquids rich formations.
机译:卧式钻井和液压压裂已成为非传统水库发展的能力技术。从紧的气体,向石油和天然气生产的煤层和煤层甲烷,所有这些资源都依赖于其商业活力的液压压裂。在这些超低渗透性形成中完成的主要目标是通过沿水平横向的多级液压裂缝提供尽可能多的岩石接触的导电路径。通过在横向长度的范围内定义横向长度的级别,沿横向,断裂放置技术和工作尺寸的阶段数进行了优化了储液器触点。断裂电导率由支撑剂型和尺寸,压裂流体系统以及放置技术决定。虽然大多数参数在完井设计中非常细节考虑,但断裂电导率受到较小的关注。一方面,许多人认为,在极低的渗透性地层中,液压骨折也充当'无限导电功能',即使具有最小的导电性。在另一侧,影响在液压骨折中作用的有效电导率的因素很差或被忽视。这可能导致井中产生低于储层潜力的井。本文提出了一种在井下条件下评估现实骨折电导率的技术,描述了导电性和生产率之间的关系及其在支撑剂选择中的经济影响。在其他变量中也考虑横向骨折,低产生支撑剂浓度和流动动力学的影响。将提出裂缝建模和实际现场结果以说明优化过程。本文中包含的案例历史表明,在页岩气和液体富含地层中的这种方法的成功实施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号