首页> 外文会议>Society of Petroleum Engineers International Heavy Oil Conference >Caprock Integrity Case Study for Non-thermal Polymer Flooding Project Using 4D Reservoir Coupled Geomechanical Simulation
【24h】

Caprock Integrity Case Study for Non-thermal Polymer Flooding Project Using 4D Reservoir Coupled Geomechanical Simulation

机译:使用4D储存器耦合地质力学模拟的非热聚合物泛洪工程的脚轮完整性案例研究

获取原文
获取外文期刊封面目录资料

摘要

Maintaining an effective caprock seal is of prime importance in any enhanced oil recovery (EOR) stimulation involving subsurface injection of fluid. Hydraulic or mechanical breaching of the caprock may entail leakage of injected fluids and/or hydrocarbons into shallower formations, or even to the surface, with the potential for adverse environmental impact. Determining a safe optimal injection pressure which minimizes the likelihood of such an occurrence is a challenging problem. For example, assessing caprock integrity with the static stress measurement alone at the virgin state of reservoir without considering dynamic stress changes is likely to be both unreliable and inadequate. In this paper, we present a case study of hydraulic and mechanical integrity of Wabiskaw caprock at multiple injection scenarios under dynamic conditions. In this study a multi-disciplinary approach was used which integrates geology, petrophysics, reservoir engineering and geomechanics followed by a finite element coupled reservoir-geomechanics simulation. A 3-D mechanical earth model (MEM) was constructed utilizing advanced azimuthal shear anisotropic sonic log and core based mechanical properties. All the available LOT mini-frac as well as MDT micro-frac tests data were assessed and used to calibrate the anisotropic stresses at initialization step in addition to assessing the lateral variability of the vertical stress. Several tight streaks expected to provide additional abutment to the primary caprock were honored in the model. The 3-D MEM was extended to the surface and embedded with the sideburden and underburden layers incorporating adjacent injectors and producers to minimize the boundary effects. This study evaluated tensile and shear failures within the reservoir and the caprock at several injection scenarios for a period of 30yrs with injection bottomhole pressures of 116 and 155bar at the rate of 150 m3 /day. No shear failure or tensile failures were predicted by the coupled geomechanical simulator in the caprock for all the injection scenarios. This model also predicted the vertical displacement within the reservoir, caprock and at the surface. The amount of heave at the ground surface was negligible.
机译:维持有效的支架密封是在任何增强的储存(EOR)刺激中的主要重要性,涉及地下注入液体的刺激。载体的液压或机械突破可能需要将注射的流体和/或烃渗漏到较浅的地层中,甚至在表面上,具有不利的环境影响的可能性。确定安全的最佳喷射压力,这最小化了这种发生的可能性是一个具有挑战性的问题。例如,在不考虑动态应力变化的情况下,单独地评估具有静态应力测量的气囊完整性,这既不是不可靠的,也可能不足。本文在动态条件下,在多注射场景下提供了Wabiskaw Caprock液压和机械完整性的案例研究。在这项研究中,使用了一种多学科方法,其整合地质,岩石物理学,水库工程和地质力学,然后是有限元耦合储层 - 地质力学模拟。 3-D机械地球模型(MEM)采用先进的方位角剪切各向异性声波测井和核心机械性能构建。除了评估垂直应力的横向可变性之外,还评估所有可用的Mini-FRAC以及MDT微FRAC测试数据,并用于在初始化步骤中校准各向异性应力。预计将在模型中为主要脚压袋提供额外的邻接的几条紧张条纹。 3-D MEM延伸到表面并嵌入粘合的粘附层和粘附层,其包含相邻的喷射器和生产者,以最小化边界效应。本研究评估了储存器内的拉伸和剪切故障,在几种注射场景下的载体,以30毫瓦的时间为116和155bar,速率为150m 3 /天。对于所有注射方案,通过载波中的耦合的地质力学模拟器预测了剪切失败或拉伸失败。该模型还预测了储存器内部的垂直位移,脚垫和表面。地面的升降量可忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号