首页> 外文会议>International Mobility Conference >Implementation of Fuzzy Logic Control in Semiactive Suspension for a Vehicle Using MATLAB SIMULINK
【24h】

Implementation of Fuzzy Logic Control in Semiactive Suspension for a Vehicle Using MATLAB SIMULINK

机译:使用Matlab Simulink对车辆的半力学悬架中模糊逻辑控制的实现

获取原文

摘要

The design of the conventional passive suspension has always been a compromise between vehicle handling and comfort, which led to the development of the modern active and semi active suspension systems. Amongst these, semi-active suspension has been focus of research in recent years owing to its lesser complexity and less power consumption as compared to active suspension. Semi active suspension uses real time variation in damping coefficient which can be achieved by using various control strategies. It is observed from available literature that Skyhook (for better ride comfort), Groundhook (for better vehicle handling) and Hybrid are most widely used strategies. These strategies use ‘On-Off’ control strategy (i.e. two preset values of damping co-efficient) but a better control over damping coefficients can be achieved using Continuous Control strategy. This paper aims to implement Continuous control strategy using Fuzzy logic for the semi active suspension. For the analysis, Two degree of freedom Quarter car model is used which is excited by three road profiles namely Bump, Sine Wave and Swept Sine wave. Comparison is done on the basis of vehicle parameters: Body displacement, Wheel displacement, Suspension working space and Dynamic tire deflection. Also frequency response of system is analysed using Fast Fourier Transform. Simulation is done using MATLAB SIMULINK and results of ‘Continuous control strategy’ are compared with the results of ‘On-Off control strategy’ and ‘Passive suspension’. Continuous control strategy using Fuzzy Logic control was found to provide better overall performance with 22.1% reduction in body displacement, 11.66% reduction in dynamic tire deflection and 31.77% reduction in suspension working space. Also Fuzzy logic control retained its stability over whole frequency range.
机译:传统被动悬架的设计一直是车辆处理和舒适之间的折衷,这导致了现代有源和半主动悬架系统的开发。在这些中,近年来,由于其与主动悬架相比,由于其较小的复杂性和功耗较少,因此半主动暂停已经焦点。半主动悬架使用可以通过使用各种控制策略来实现的阻尼系数的实时变化。从现有文献中观察到Skyhook(为了更好的乘坐舒适),陆地(更好的车辆处理)和杂种最广泛使用的策略。这些策略使用'开关'控制策略(即两个预设值的阻尼共同效率),但可以使用连续控制策略来实现更好地控制阻尼系数。本文旨在利用模糊逻辑为半主动悬架实施连续控制策略。对于分析,使用两级自由季度汽车模型,其由三条路型材突出,即凸点,正弦波和扫掠正弦波。比较是在车辆参数的基础上进行:体位移,车轮位移,悬架工作空间和动态轮胎偏转。还使用快速傅里叶变换分析系统的频率响应。使用Matlab Simulink进行模拟,并将“连续控制策略”的结果与“开关控制策略”和“被动悬架”的结果进行比较。发现使用模糊逻辑控制的连续控制策略提供更好的整体性能,减少体位移的22.1%,动态轮胎挠度降低11.66%,悬架工作空间减少了31.77%。模糊逻辑控制还保留了整个频率范围的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号