首页> 外文会议>Philadelphia, Pennsylvania Meeting >Statically Oleophilic but Dynamically Oleophobic Smooth PDMS Brush Surface
【24h】

Statically Oleophilic but Dynamically Oleophobic Smooth PDMS Brush Surface

机译:静态疏油但动态疏油平滑PDMS刷表面

获取原文

摘要

Improvement of the liquid droplet motion on various solid surfaces is a key factor in a wide variety of advanced applications, such as microfluidics, micro-/nano-electromechanical systems (MEMS/NEMS), self-cleaning surfaces and window coatings. In the ongoing effort to control the motion of liquid droplets on solid surfaces, dynamic contact angles (CAs) rather than static CAs (θ_s) are more useful because the latter only provides information about the general surface energy of the solid surface, and in some cases, can result in incorrect understandings of the surface chemistry/topography. To understand the actual surface dewettability and the ease with which liquid droplets can move on the surface, it is necessary to determine the CA hysteresis. This is described in Equation 1,1 where F_S = kwγ_(LV) (cosθ_R - cosθ_A) (1) F_S is the force required to move the droplet, k is a constant that depends on the drop shape, w is the width of the drop and γLV is the liquid-vapor surface tension. θ_A and θ_R are the advancing and receding CAs, respectively, and cosθ_R - cosθA is the CA hysteresis. Equation 1 predicts that with greater differences between θ_A and θ_R, F_s also increases. If the CA hysteresis is high enough, the liquid droplets must be angled at larger tilt angles (TAs) and be considerably distorted from a section of a sphere to a section of a tapered ellipsoid, for the droplets to finally move. This droplet shape change has been described as the activation energy barrier to droplet movement. If the CA hysteresis is sufficient small, only slight distortion of the droplet is required and the activation energy barriers for movement are small. Subsequently, the liquid droplet moves smoothly at relatively low TAs, even if the CAs are low (regardless of the degree of hydrophobicity).
机译:各种固体表面上的液滴的运动的改进是在各种各样的高级应用,如微流体的一个关键因素,微米/纳米机电系统(MEMS / NEMS),自清洁表面和窗口的涂层。在正在进行的努力控制在固体表面上的液滴,动态接触角(CA)的,而不是静态的CA(θ_s)是更有用,因为后者仅提供关于固体表面的一般表面能量信息的运动,并且在一些情况下,可能会导致的表面化学/地形的不正确的理解。了解实际表面dewettability和与液滴可以在表面上移动的难易程度,有必要确定CA迟滞。这在描述的公式1,1,其中F_S =kwγ_(LV)(cosθ_R - cosθ_A)(1)是F_S移动液滴所需的力,k是依赖于液滴形状的常数,w是的宽度降和γLV是液 - 气表面张力。 θ_A和θ_R是前进和后退的CA,分别和cosθ_R - cosθA是CA滞后。公式1预测与θ_A和θ_R,F_S也增加之间有较大的差异。如果CA滞后是足够高的,液滴必须在较大的倾斜角(TAS)成一定角度,并可以显着从球体的一种圆锥椭圆体的截面,所述液滴的截面最终移动失真。该液滴形状变化已被描述为激活能垒的液滴的移动。如果CA滞后是足够小,只有液滴的轻微失真是必要的,用于移动的活化能障碍是小的。随后,液滴移动顺利在相对低的TAS,即使CA是低(不考虑疏水性程度的)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号