首页> 外文会议>CIRP Conference on Surface Integrity >Surface Roughness Analysis and Parameter Optimization of Mold Steel Milling
【24h】

Surface Roughness Analysis and Parameter Optimization of Mold Steel Milling

机译:模钢铣削的表面粗糙度分析与参数优化

获取原文

摘要

In this paper, aiming at the characteristics of large mold and complex surface of automobile cover mold, the mold processing of cover is analyzed, especially the mold surface quality. Roughness prediction is an important concept in the field of machining and manufacture, especially for automobile cover mold manufacturing industry, not only to improve its quality of product, reduce wear and tear, but also to enhance its mechanical strength. This article includes the following experimental content. The prediction model includes the definition of boundary conditions and the mathematical model of regression analysis. The experimental results and predicted values were compared on the basis of the experiment by way of range method, analysis of variance and other methods to find the optimal milling conditions. With the mathematical model used for the objective function and the milling parameters used for independent variables, NSGA-II algorithm is introduced to obtain multi-objective function optimization. The relationship between milling parameters and surface roughness is studied to determine the effect of different parameters on the machined surface quality. By the system the time of practical production is saved and the processing efficiency is improved. After the key technologies of surface roughness prediction based on high speed milling and milling parameter optimization studied, the consumption of the resources in the process of actual production is reduced.
机译:本文旨在瞄准大型模具和汽车覆盖模具的复杂表面的特点,分析了盖板的模具加工,尤其是模具表面质量。粗糙度预测是机械加工和制造领域的一个重要概念,特别是对于汽车覆盖模具制造业,不仅可以提高其产品质量,减少磨损和撕裂,还能提高其机械强度。本文包括以下实验内容。预测模型包括边界条件的定义和回归分析的数学模型。通过测距方法,方差分析和其他方法进行实验,比较实验结果和预测值,以找到最佳铣削条件。利用用于目标函数的数学模型和用于独立变量的铣削参数,引入了NSGA-II算法以获得多目标函数优化。研究了研磨参数与表面粗糙度之间的关系,以确定不同参数对机加工表面质量的影响。通过系统保存实际生产的时间,提高了处理效率。基于高速铣削和铣削参数优化的表面粗糙度预测的关键技术研究,实际生产过程中资源的消耗减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号