首页> 外文会议>High-Performance Computing in Remote Sensing >A Comparative Analysis of GPU Implementations of Spectral Unmixing Algorithms
【24h】

A Comparative Analysis of GPU Implementations of Spectral Unmixing Algorithms

机译:光谱解密算法GPU实现的比较分析

获取原文

摘要

Spectral unmixing is a very important task for remotely sensed hyperspectral data exploitation. It involves the separation of a mixed pixel spectrum into its pure component spectra (called endmembers) and the estimation of the proportion (abundance) of each endmember in the pixel. Over the last years, several algorithms have been proposed for: i) automatic extraction of endmembers, and ii) estimation of the abundance of endmembers in each pixel of the hyperspectral image. The latter step usually imposes two constraints in abundance estimation: the non-negativity constraint (meaning that the estimated abundances cannot be negative) and the sum-to-one constraint (meaning that the sum of endmember fractional abundances for a given pixel must be unity). These two steps comprise a hyperspectral unmixing chain, which can be very time-consuming (particularly for high-dimensional hyperspectral images). Parallel computing architectures have offered an attractive solution for fast unmixing of hyperspectral data sets, but these systems are expensive and difficult to adapt to on-board data processing scenarios, in which low-weight and low-power integrated components are essential to reduce mission payload and obtain analysis results in (near) real-time. In this paper, we perform an inter-comparison of parallel algorithms for automatic extraction of pure spectral signatures or endmembers and for estimation of the abundance of endmembers in each pixel of the scene. The compared techniques are implemented in graphics processing units (GPUs). These hardware accelerators can bridge the gap towards on-board processing of this kind of data. The considered algorithms comprise the orthogonal subspace projection (OSP), iterative error analysis (IEA) and N-FINDR algorithms for endmember extraction, as well as unconstrained, partially constrained and fully constrained abundance estimation. The considered implementations are inter-compared using different GPU architectures and hyperspectral data sets collected by the NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS).
机译:光谱解密是远程感测的高光谱数据剥削的一个非常重要的任务。它涉及将混合像素光谱分离到其纯成分谱(称为终端)中的分离,并估计像素中每个端部的每个端部的比例(丰度)。在过去几年中,已经提出了几种算法:i)自动提取终端终端,并且II)估计高光谱图像的每个像素中的终端的丰度。后一步通常在丰度估计中施加两个约束:非消极性约束(意味着估计的丰富不能为负),并且总和到一个约束(意味着给定像素的终点数分数的总和必须为Unity )。这两个步骤包括高光谱的解弹链,这可能非常耗时(特别是对于高维光谱图像)。并行计算架构为快速解密数据集提供了一种有吸引力的解决方案,但这些系统昂贵且难以适应车载数据处理方案,其中低重量和低功耗集成组件对于降低任务有效载荷至关重要并获得分析结果(近)实时。在本文中,我们执行平行算法的相互比较,用于自动提取纯光谱签名或终端,并用于估计场景的每个像素中的终端的丰度。比较技术以图形处理单元(GPU)实现。这些硬件加速器可以将间隙桥接到板载处理这种数据的过程。所考虑的算法包括用于终点提取的正交子空间投影(OSP),迭代误差分析(IEA)和N-FindR算法,以及不受约束的,部分受约束和完全约束的丰富估计。考虑的实现是使用不同的GPU架构和NASA的空中可见红外成像光谱仪(Aviris)收集的不同GPU架构和高光谱数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号