首页> 外文会议>Conference on boundary and interior layers, computational and asymptotic methods >Finite Element Approximation of the Convection-Diffusion Equation:Subgrid-Scale Spaces, Local Instabilities and Anisotropic Space-Time Discretizations
【24h】

Finite Element Approximation of the Convection-Diffusion Equation:Subgrid-Scale Spaces, Local Instabilities and Anisotropic Space-Time Discretizations

机译:对流扩散方程的有限元近似:子地图级空间,本地稳定性和各向异性时空离散化

获取原文

摘要

The objective of this paper is to give an overview of the finite element approximation of the convection-diffusion equation that we have been developing in our group during the last years, together with some recent methods. We discuss three main aspects, namely, the global stabilization in the convective dominated regime, the treatment of the local instabilities that still remain close to layers when a stabilized formulation is used and the way to deal with transient problems. The starting point of our formulation is the variational multiscale framework. The main idea is to split the unknown into a finite element component and a remainder that is assumed that the finite element mesh cannot resolve. A closed form expression is then proposed for this remainder, referred to as subgrid-scale. When inserted into the equation for the finite element component, a method with enhanced stability properties is obtained. In our approach, we take the space for the subgrid-scales orthogonal to the finite element space. Once global instabilities have been overcome, there are still local oscillations near layers due to the lack of monotonicity of the method. Shock capturing techniques are often employed to deal with them. Here, our point of view is that this lack of monotonicity is inherent to the integral as duality pairing intrinsic to the variational formulation of the problem. We claim that if appropriate weighting functions are introduced when computing the integral, giving a reduced weight to layers, the numerical behavior of the method is greatly improved. The final point we treat is the time integration in time-dependent problems. Most stabilized finite element method require a link between the time step size of classical finite difference schemes in time and the mesh size employed for the spatial discretization. We show that this can be avoided by considering the subgrid-scales as time dependent, and discretizing them in time as well. That allows us to perform a complete numerical analysis which is not restricted by any condition on the time step size, thus permitting anisotropic space-time discretizations.
机译:本文的目的是给对流扩散方程,我们已经在我们的小组在过去几年发展中的有限元逼近的概述,最近的一些方法在一起。我们讨论了三个主要的方面,即,在对流主导制度的全球稳定,局部不稳定性仍然保持在接近层当使用稳定的制剂和方式的处理,处理瞬态问题。我们制定的出发点是变多尺度框架。其主要思想是未知分成有限元组分和其假定有限元网格无法解析的余数。然后,解析解,提出了这个剩余部分,被称为次网格的规模。当插入到方程的有限元部件,获得了具有增强的稳定性的特性的方法。在我们的方法,我们采取了次网格尺度的空间正交有限元空间。一旦全球不稳定性已经被克服,还有由于缺乏方法的单调性的近层局部振荡。激波捕捉技术常被用来对付他们。在这里,我们的观点是,这种缺乏单调性是与生俱来的积分作为对偶配对固有的问题的变分列式。我们要求,如果计算的积分时,得到重量减轻到层被引入适当的加权函数,所述方法的数值行为大大提高。最后一点,我们的治疗是在与时间相关的问题的时间整合。最稳定的有限元法需要古典差分格式的时间步长之间的时间和空间离散采用的网目尺寸的链接。我们表明,这种可以通过考虑次网格尺度随着时间的依赖,并在时间离散他们以及避免。这使我们能够执行完整的数值分析其不受该时间步长的任何条件的限制,从而允许各向异性时空离散化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号