首页> 外文会议>SAE AeroTech Congress Exhibition >Design and Simulation of Fault Tolerant Flight Control Schemes Implemented on a Parallel and Distributed Computational Cluster
【24h】

Design and Simulation of Fault Tolerant Flight Control Schemes Implemented on a Parallel and Distributed Computational Cluster

机译:平行和分布式计算集群实现容错飞行控制方案的设计与仿真

获取原文

摘要

In recent years, there has been an increase in the use of Unmanned Aerial Systems (UAS) in the civilian sector for various purposes. As these platforms are constrained in terms of payload and capacity, they are typically equipped with a minimal sensor suite and the use of redundant sensors is uncommon. This research effort describes the design and simulation of a Neural Network (NN) based fault tolerant flight control approach for sensor and actuator failures, implemented on a parallel and distributed computational architecture. The inter process communication is implemented using BSD sockets and Message Passing Interface (MPI). For the purpose of the sensor failure detection, identification and accommodation (SFDIA) task, it is assumed that the pitch, roll and yaw rate gyros onboard the aircraft are without physical redundancy. The SFDIA task is accomplished through the use of a set of four neural networks, named Main Neural Network (MNN) and a set of three De-Centralized Neural Networks (DNNs), providing analytical redundancy for the pitch, roll and yaw gyros. The purpose of the MNN is to detect any failure on the three sensors, while the purpose of the DNNs is to identify the failed sensor and subsequently to facilitate failure accommodation by providing estimates of the sensor measurements. The actuator failure detection, identification and accommodation (AFDIA) scheme also features the MNN, for detection of actuator failures, along with three Neural Network Controllers (NNCs) for providing the compensating control surface deflections to neutralize any failure induced pitching, rolling and yawing moments. All NNs continue to train online, on top of an offline trained baseline network structure, using the Extended Back-Propagation Algorithm (EBPA), with data from a pilot-in-the loop flight simulation. Experiments indicate that the distributed architecture is capable of learning the behavior of the sensors (roll, pitch and yaw gyros) and is able to detect and identify failures on them. Additionally, it has also been shown that the distributed architecture is able to provide compensating control surface deflections to recover from failures on the actuators of the aircraft.
机译:近年来,在民用行业中使用无人机系统(UAS)以获得各种目的。由于这些平台在有效载荷和容量方面受到约束,它们通常配备有最小的传感器套件,并且冗余传感器的使用罕见。该研究工作描述了在并行和分布式计算架构上实现的用于传感器和致动器故障的神经网络(NN)的故障飞行控制方法的设计和仿真。使用BSD套接字和消息传递接口(MPI)来实现帧间处理通信。出于传感器故障检测,识别和住宿(SFDIA)任务的目的,假设飞机上的俯仰,卷和横摆率陀螺仪没有物理冗余。 SFDIA任务是通过使用一组四个神经网络,命名的主要神经网络(MNN)和一组三个去聚集的神经网络(DNN)来实现,为音调,卷和偏航Gyros提供分析冗余。 MNN的目的是检测三个传感器上的任何故障,而DNN的目的是通过提供传感器测量的估计来识别失败的传感器,然后通过提供传感器测量的估计来促进故障容纳。致动器故障检测,识别和容纳(AFDIA)方案还具有MNN,用于检测致动器故障,以及三个神经网络控制器(NNC),用于提供补偿控制表面偏转以中和任何故障引起的投影,滚动和打开矩。所有NNS继续在线训练,在截止训练的基线网络结构之上,使用扩展的背部传播算法(EBPA),来自导航循环飞行模拟的数据。实验表明,分布式架构能够学习传感器(滚动,俯仰和偏航Gyros)的行为,并且能够检测和识别它们上的故障。另外,还示出了分布式架构能够提供补偿控制表面偏转,以从飞机的致动器上的故障中恢复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号