首页> 外文会议>International Conference Petroleum Phase Behavior and Fouling >Biochar as a Fuel: 3. Mechanistic Understanding on Biochar Thermal Annealing at Mild Temperatures and Its Effect on Biochar Reactivity
【24h】

Biochar as a Fuel: 3. Mechanistic Understanding on Biochar Thermal Annealing at Mild Temperatures and Its Effect on Biochar Reactivity

机译:生物炭作为燃料:3。在温和温度下的生物炭热退火的机械理解及其对生物炭反应性的影响

获取原文

摘要

This study reports a mechanistic investigation on the thermal annealing process at mild temperatures (750 and 900 °C) and its effect on the reactivity of biochar prepared from the pyrolysis of a Western Australia mallee wood. A range of analyses were carried out, including biochar oxidation reactivity, inorganic species, oxygen and hydrogen contents in the biochars, release of heteroatoms in biochar as the gaseous product, and biochar structural evolution during thermal annealing. Extensive thermal annealing (up to 600 min) of biochars at 750 and 900 °C leads to little loss of inorganic species from the biochars. Fourier transform (FT)-Raman spectroscopic analysis further shows that thermal annealing induces a progressively more ordered carbonaceous structure with an increase in the temperature and thermal annealing time. The process is coupled with the loss of heteroatoms, released as dominantly H2 and to a less extent CO. The effect of thermal annealing is drastic during the initial period up to 60 min and levels off with further holding at the annealing temperatures. As thermal annealing progresses, a carbon structural transformation clearly takes place and condenses at least part of the reactive and amorphous structures into larger and more inert ring systems, although little graphitization of biochar carbon structure is evidenced. As a result, thermal annealing leads to a significant change in the biochar reactivity. In the absence of catalytic species, the reduction in biochar reactivity is due to the ordering of the carbon structure induced by thermal annealing. In the presence of catalytic species, the changes in biochar reactivity are results of changes in both the carbon structure and catalytic activity. The changes in the catalytic activity appear to suggest a change in the form and dispersion of the catalytic species within the biochars, as results of the loss of heteroatoms and carbon structure condensation.
机译:本研究报告了对温度温度(750和900℃)的热退火过程的机制研究及其对由西澳大利亚马利埃木材的热解制的生物炭反应性的影响。进行了一系列分析,包括生物炭的生物炭氧化反应性,无机物质,氧气和氢气含量,生物炭中的杂原子作为气态产物,以及在热退火期间的生物炭结构演变。 750和900°C的广泛热退火(高达600分钟)的生物脉冲导致生物触发器中的无机物种的损失很小。傅里叶变换(FT)-Raman光谱分析进一步表明,热退火诱导逐渐增加的碳质结构,随着温度和热退火时间的增加而导致逐渐有序的碳质结构。该过程与杂原子的损失相结合,释放为优势H2和较少的范围CO。在初始时段期间热退火的效果在最多60分钟的初始时期并且在退火温度下进一步保持液位。作为热退火的进展,清楚地发生碳结构变换,并将至少部分反应性和非晶结构冷凝成更大,更惰性的环系统,尽管已经证明了生物炭碳结构的少量石墨化。结果,热退火导致生物炭反应性的显着变化。在没有催化物质的情况下,Biochar反应性的降低是由于热退火引起的碳结构的排序。在存在催化物质的情况下,生物炭反应性的变化是碳结构和催化活性的变化的结果。催化活性的变化似乎表明Biochars内催化物种的形式和分散的变化,因为杂原子丧失和碳结构缩合的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号