首页> 外文会议>International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes >Texture Control of Aluminum, Iron, and Magnesium Alloy Sheets to Increase Their Plastic Strain Ratios
【24h】

Texture Control of Aluminum, Iron, and Magnesium Alloy Sheets to Increase Their Plastic Strain Ratios

机译:铝,铁和镁合金板材的纹理控制,增加其塑料应变比

获取原文

摘要

It is known that the limiting drawing ratio of sheet metals is proportional to their plastic strain ratios, and the plastic strain ratios of fcc and bcc metal sheets increase with increasing <111>//ND component in their textures. Conventional cold rolling and subsequent annealing of fcc metals cannot give rise to the <111>//ND component. Specifically, the cold rolling texture of polycrystalline fcc metals is characterized by the fiber connecting the {112}<111>, {123}<634>, and{011}<211> orientations in the Euler space, which is often called the β-fiber. The density of each component in the fiber depends on the stacking fault energy of metals. The {112}<111> and {123}<634> textured Al alloy sheets evolve the {001}<100> texture, when recrystallized. The low plastic strain ratios of the Al alloy sheets are attributed to the {001}<100> texture. The <111>//ND texture can be obtained in shear deformed fcc sheets. Bcc steels develop the <111>//ND texture when cold rolled and recrystallized. However, the density of <111>//ND depends on the content of dissolved interstitial elements such as carbon and nitrogen. The density of the <111>//ND component decreases with increasing concentration of the dissolved interstitial elements. For a given steel, the density of the <111>//ND component can vary with varying thermomechanical treatment. Magnesium alloy sheets are subjected to sheet forming processes at temperatures of 200°C or higher because of their basal plane texture, or the <0002>//ND orientation. Many studies have been made to alleviate the component so that the magnesium alloy sheets can have better formability. In this article, the above issues are briefly reviewed and discussed.
机译:众所周知,片材金属的限制比例与其塑性应变比成比例,并且FCC和BCC金属板的塑性应变比随着它们的纹理中的增加而增加。 FCC金属的常规冷轧和随后的退火不能产生<111 // Nd组分。具体地,多晶FCC金属的冷轧纹理的特征在于将{112} <111>,{123} <634>和{011} <211>取向的纤维在欧拉空间中的方向,该方向通常被称为β -纤维。纤维中每个组分的密度取决于金属的堆叠故障能量。 {112} <111>和{123} <634>纹理的Al合金板在重结晶时演变{001} <100>纹理。 Al合金纸张的低塑性应变比归因于{001} <100>纹理。可以在剪切变形的FCC片中获得<111> // Nd纹理。冷轧和再结晶时,BCC钢开发<111> // ND纹理。然而,<111 // nd的密度取决于溶解的间质元素如碳和氮的含量。 <111> // Nd组分的密度随着溶解间质元素的浓度的增加而降低。对于给定的钢,<111 // Nd组分的密度可以随着热机械处理而变化。由于其基础平面纹理,或者+ 0002> // Nd取向,在200℃或更高的温度下进行镁合金片材在200℃或更高的温度下进行。已经进行了许多研究来缓解组件,使得镁合金板可以具有更好的成形性。在本文中,简要审查和讨论了上述问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号