首页> 外文会议>ASME/JSME thermal engineering joint conference >EFFECTS OF THE NANOSTRUCTURAL GEOMETRY AT A LIQUID-SOLID INTERFACE ON THE INTERFACIAL THERMAL RESISTANCE AND THE LIQUID MOLECULAR NON- EQUILIBRIUM BEHAVIORS
【24h】

EFFECTS OF THE NANOSTRUCTURAL GEOMETRY AT A LIQUID-SOLID INTERFACE ON THE INTERFACIAL THERMAL RESISTANCE AND THE LIQUID MOLECULAR NON- EQUILIBRIUM BEHAVIORS

机译:纳米结构几何形状在液固界面对界面热阻和液体分子非平衡行为的影响

获取原文

摘要

The effects of the structural geometry at the nanometer scale on the thermal resistance at a liquid molecule-solid interface, as well as the interfacial energy transport mechanism of liquid molecules, were investigated directly by the nonequilibrium classical molecular dynamics simulations. The 12-6 Lennard-Jones potential energy functions for liquid molecules and the channel structure at the nanometer scale are employed so as to discuss the effects of the surface geometry at the nanometer scale on the interfacial thermal resistance in comparison with a flat surface. The thermal resistance between solid and liquid molecules was calculated by the temperature discontinuity at the liquid-solid interface and the energy flux that was added or subtracted by the Langevin method per unit area so as to maintain a constant boundary temperature of solid walls. The substantial interfacial thermal resistance reduction depending on the interaction parameters between solids and liquid molecules was observed in the case of the nanostructure surface in comparison with the flat surface. The liquid-solid interfacial thermal resistance reduction in the case of nanostructure surface relates to the energy transport mechanism change at the liquid-solid interface and the surface area magnification.
机译:在上热阻纳米尺度的结构的几何形状的以液体分子 - 固体界面的影响,以及液体分子的界面能输送机构中,通过非平衡经典分子动力学模拟直接影响。用于液体分子在纳米尺度的12-6的Lennard-Jones作用势的能量函数和信道结构被采用,以便讨论与平坦表面相比,在对界面热阻纳米尺度表面几何形状的影响。固体和液体的分子之间的热阻是通过在液体 - 固体界面处的温度不连续性和添加或减去由每单位面积的朗之万方法,以便维持固体壁的恒定边界温度下的能量通量计算。在纳米结构表面的情况下,观察到与平坦表面相比,这取决于固体和液体分子之间的相互作用参数的大量界面热阻降低。在纳米结构表面的情况下,液固界面热阻减少涉及在液 - 固界面的能量输送机构的变化和表面面积放大倍数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号