【24h】

Composite Steel Stud Blast Panel Design and Experimental Testing

机译:复合钢螺柱爆破面板设计和实验测试

获取原文

摘要

Based on Federal Aviation Authority (FAA) requirements, project specific blast loads are determined for the design of a new airport traffic control tower. These blast loads must be resisted by exterior wall panels on the control tower, protecting building occupants from intentional explosives attack scenarios. Such blast resistant walls are typically constructed of thick reinforced concrete panels or composite steel plate and rolled sections, as conventional building cladding systems have relatively low blast resistance. While these more robust design approaches are valid, the additional cladding mass they represent will significantly increase the base shear and overturning demand in seismic zones. This paper investigates the use of a light structural system comprised of a steel stud wall assembly partially embedded in a thin layer of concrete to obtain composite action. Fiber reinforced polymer (FRP) composites are also included to increase the blast resistance and aid in keeping the panel weight to a minimum. Two full-scale composite steel stud walls are designed, constructed, and tested dynamically in the BakerRisk shock tube. The stud walls consist of back-to-back 150 mm deep, 14 gauge (1.8 mm thick), cold-formed steel studs spaced at 610 mm on center. Both specimens have a 50 mm thick normal weight concrete layer, reinforced with welded wire mesh that is welded to the stud compression flanges to achieve composite action. Two layers of Tyfo SEH-51A fiber reinforced composites are used on the tension flange of the steel studs. A single layer of Tyfo SEH-51A composites is used on the tension face of the concrete layer between the studs for one of the specimens. Web stiffeners are used at the bearing support to prevent premature web crippling shear failure of the specimens. The stud walls are analyzed using single-degree-of-freedom (SDOF) models. A non-linear moment-curvature relationship, accounting for actual material constitutive properties, is used for determining the resistance function of the walls. Blast pressure and impulse data from the shock tube tests is used to compare analytical predictions to the measured displacement-time response. Analytical predictions of panel response for both tests are within ten percent of the observed response based on displacement.
机译:根据联邦航空权威(FAA)要求,项目特定的爆破载荷确定了一个新的机场交通管制塔的设计。这些爆破载荷必须由控制塔上的外墙板抵抗,保护从故意爆炸物攻击情景中的建筑物乘客。这种爆破壁通常由厚的钢筋混凝土板或复合钢板和卷绕的部分构成,因为传统的建筑物包层系统具有相对低的抗爆炸性。虽然这些更强大的设计方法有效,但它们所代表的额外包层会显着增加抗震区中的基础剪切和推翻需求。本文研究了一种灯结构系统,包括部分嵌入在混凝土层薄层中的钢支柱壁组件,以获得复合作用。还包括纤维增强聚合物(FRP)复合材料,以增加耐磨性,并有助于将面板重量保持在最小值。在BakerRisk震动管中动态设计,构造和测试两个全尺寸复合钢螺柱墙。螺柱壁由背靠背的150 mm深,14条规(1.8毫米厚),冷成型钢螺柱在中心的610毫米处间隔开。两个样品都有50毫米厚的正常体积混凝土层,加强焊接金属丝网,焊接到螺柱压缩法兰以实现复合作用。两层TYFO SEH-51A纤维增强复合材料用于钢螺柱的张力法兰。单层Tyfo SEH-51A复合材料用于螺柱之间的混凝土层的张紧面上,用于其中一个样本。网状加强件用于轴承支架,以防止样品的早产纤维剪切抗剪切衰竭。使用单级自由度(SDOF)模型分析螺柱壁。用于实际材料本构性能的非线性力矩曲率关系,用于确定壁的电阻函数。来自冲击管测试的爆炸压力和脉冲数据用于将分析预测与测量的位移时间响应进行比较。两种测试的面板响应的分析预测是基于位移的观察到响应的百分比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号