首页> 外文会议>Symposium O on Multifunctional Nanoparticle Systems - Coupled Behavior and Applications >Ultra Wideband AC Permittivity and Permeability of Nanometer and Micron Size Iron and Magnetite Particulates and Their Composites
【24h】

Ultra Wideband AC Permittivity and Permeability of Nanometer and Micron Size Iron and Magnetite Particulates and Their Composites

机译:纳米和微米尺寸铁和磁铁矿颗粒的超宽带交流介电常数和渗透性

获取原文

摘要

Composites formed of magnetic and non magnetic material mixtures are often used in ultra wideband RF applications like electromagnetic suppression; circuit and antenna substrates; filters, phase shifters, medical diagnostics and treatment, magnetic film-mounted transmission lines; or high power radiators. Accurate design of the composites requires that magnetic properties (e.g. saturation magnetization, coercivity, anisotropy field and DC permeability) and/or dielectric material properties be known as functions of frequency, RF signal power and particulate size since at diameters less than ~ 100 nm magnetic and dielectric properties can significantly deviate from the bulk. In this paper, magnetic measurements of Fe and Fe_3O_4 particulates from 1MHz to 10 GHz are made as functions of magnetic particle size (5 nm to 10s of microns). AC magnetic constitutive parameter data are acquired using strip line cavity and coaxial line reflection-transmission. Composite measurements are fit to Lorentzian functional forms which determine DC susceptibility and resonant and relaxation frequencies of the composite. Effective media models are then applied to map the composite susceptibility, resonant and relaxation frequencies to anisotropy, relaxation frequency and DC susceptibility for each particle size and material. Magnetite composites encompass 3 orders of magnitude in particle scale and their measured data yield the most information for scale dependencies of magnetic parameters. Magnetite magnetization and susceptibility decrease with particle dimension, but a significant increase in anisotropy is observed. This increase in anisotropy modifies expectations for particle resonant frequency and paramagnetic onset temperature and therefore impacts the choice of magnetic scale for RF material, biological and medical applications of magnetite. Fe composites were analyzed for particles from ~ 70 nm to greater than 10 micron diameters. In this size range, susceptibility was measured to be ~ 1/6 the bulk value, with small dependence on particulate size. Fe particle magnetic anisotropy shows small increases over the bulk values. A relationship for magnetization of iron as a function of Fe size is proposed that is similar to that relationship empirically derived for magnetite.
机译:由磁性和非磁性材料混合物形成的复合材料通常用于电磁抑制等超宽带RF应用中;电路和天线基板;过滤器,相移器,医疗诊断和处理,磁性膜安装线;或高功率散热器。复合材料的精确设计要求将磁性(例如饱和磁化,矫顽力,各向异性场和DC渗透率)和/或介电材料特性称为频率,RF信号功率和颗粒尺寸的功能,因为直径小于〜100nm磁性介电性能可以显着偏离散装。在本文中,从1MHz至10GHz的Fe和Fe_3O_4颗粒的磁测量作为磁性粒径(5nm至10s微米)的函数制成。使用条带线腔和同轴线反射传输来获取交流磁性本构体参数数据。复合测量适用于Lorentzian功能形式,可确定复合材料的直流易感性和谐振和弛豫频率。然后应用有效的介质模型来将复合易感性,谐振和弛豫频率映射到各向异性,对每个粒度和材料的各向异性,弛豫频率和直流敏感性。磁铁矿复合材料包含3个粒度的3个级,其测量数据产生最多的磁参数依赖性信息。磁铁矿磁化和敏感性随粒子尺寸而降低,但观察到各向异性的显着增加。各向异性的这种增加改变了对粒子共振频率和顺磁性起始温度的预期,因此影响磁铁矿的RF材料,生物和医学应用的磁度选择。分析Fe复合材料,用于〜70nm至大于10微米直径的颗粒。在该尺寸范围内,测量易感性为〜1/6的散装值,对颗粒尺寸的依赖性小。 Fe粒子磁各向异性显示出散装值的小增加。提出了作为Fe大小的函数的铁磁化的关系,其类似于磁铁矿凭经验的该关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号