首页> 外文会议>International Society for Photogrammetry and Remote Sensing Commission Technical Commission Symposium >PASSIVE MICROWAVE OBSERVATIONS OF THE HISTORIC FEBRUARY 2010 SNOW STORMS IN THE BALTIMORE/WASHINGTON D.C. AREA
【24h】

PASSIVE MICROWAVE OBSERVATIONS OF THE HISTORIC FEBRUARY 2010 SNOW STORMS IN THE BALTIMORE/WASHINGTON D.C. AREA

机译:Baltimore /华盛顿州地区2010年2月历史悠久的2010年2月雪风暴的被动微波观察

获取原文

摘要

The unprecedented snowfall during early February 2010 in the Baltimore/Washington area provided a unique opportunity to map, monitor and measure snowfall, snow cover extent, snow water equivalent (SWE), and snow melt using a suite of remote sensing instruments. Because snow cover in the Middle Atlantic area is in most years patchy and a true multi-layered snow pack is rarely established, utilizing a remote sensing approach to observe snow parameters is more challenging than in regions where falling snow and snow packs are more reliable. The Advanced Microwave Scanning Radiometer (AMSR-E) and Scanning Microwave/Instrument (SSM/I) data were used to assess SWE and the onset of melt. For this investigation, the Advanced Microwave Sounding Unit-B (AMSU-B) images were employed to detect falling snow. Snowfall observations and retrievals show that indeed falling snow signatures can be seen in high frequency brightness temperatures. Detection of falling snow is performed operationally, while retrieving falling snow rates is a new area of scientific research and still requires additional investigation. However, it is encouraging that, in general, where falling snow is occurring, on the surface below, snow cover is present. Pixels that are mixed with water seriously compromise the efficacy of snow pack observing sensors operating in the microwave portion of the electromagnetic spectrum. The Chesapeake Bay and its wide mouthed, tidewater tributaries thus negatively impacts efforts to derive SWE and snowmelt. Furthermore, the average daytime maximum temperatures in this region are well above freezing, and on occasion even the daily minimum temperatures may remain above 0 deg C, confounding the passive microwave algorithms used to derive SWE, which assume dry snowpack conditions. Although the passive microwave signatures illustrated in this study are clearly related to snow, it's not straightforward whether or not the signatures are due to variations in SWE or to snowpack metamorphism or to a combination of both.
机译:2010年2月初在Baltimore /华盛顿地区的前所未有的降雪提供了一个独特的机会,可以使用遥感仪器套件来映射,监测和测量降雪,雪覆盖范围,雪水和SWE)和雪熔融。由于中部大西洋地区的雪覆盖是大多数差不多的补丁和一个真正的多层雪包很少建立,利用遥感方法观察雪参数比在下降雪和雪包更可靠的地区更具挑战性。先进的微波扫描辐射计(AMSR-e)和扫描微波/仪器(SSM / I)数据用于评估SWE和熔体发作。对于这项研究,采用先进的微波探测单元-B(AMSU-B)图像来检测落雪。降雪观测和检索表明,在高频亮度温度下可以看到确实下降的雪签。落下雪的检测是在操作上进行的,同时检索下降的雪速是一个新的科研领域,仍然需要额外的调查。然而,令人鼓舞的是,通常,在下面发生下降的情况下,在下面的表面上,存在雪覆盖。与水混合的像素严重损害了在电磁谱的微波部分中操作的雪包观察传感器的功效。因此,切萨皮克湾及其广泛的潮水支流,因此对衍生SWE和雪地派产生了负面影响。此外,该区域中的平均日间最大温度远高于冻结,并且在每日最低温度的情况下仍然可以保持在0°C以上,混淆了用于衍生SWE的被动微波算法,该算法假设干燥的积雪条件。尽管本研究中所示的被动微波签名显然与雪有关,但签名是否是由于SWE的变化或Snowpack变质或两者的组合而直截了当。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号