首页> 外文会议>SPIE Conference on Software and Cyberinfrastructure for Astronomy >Star Net: A deep learning analysis of infrared stellar spectra
【24h】

Star Net: A deep learning analysis of infrared stellar spectra

机译:星网:红外恒星光谱的深度学习分析

获取原文

摘要

In an era when spectroscopic surveys are capable of collecting spectra for hundreds of thousands of stars, fast and efficient analysis methods are required to maximize scientific impact. These surveys provide a homogeneous database of stellar spectra that are ideal for machine learning applications. One such application, StarNet, is a convolutional neural network developed to derive stellar labels (temperature, surface gravity, and metallicity) from both SDSS-III APOGEE and synthetic stellar spectra. It has demonstrated excellent precision and accuracy over a wide range of signal-to-noise ratios, when trained on either observed or synthetic spectra. Though StarNet was developed using the high-resolution (R~ 20,000) APOGEE spectra and corresponding ASSeT synthetic grid, we suggest that this technique is applicable to other spectral resolutions, spectral surveys, and wavelength regimes. As a demonstration, we present a version of StarNet trained on lower resolution, R=6000, ASSeT synthetic spectra. This resolution was selected to prepare for spectra delivered by Gemini/NIFS and the forthcoming Gemini/GIRMOS instruments. Results suggest that the stellar parameters determined from this medium-resolution StarNet version can be comparable in precision to the high-resolution APOGEE results. This success can be attributed to (1) a large training set of synthetic spectra (N~200,000) with a priori stellar labels, and (2) the use of the entire spectrum in the solution rather than a few weighted windows, which is common in other automated spectral analysis methods (e.g. FERRE). Remaining challenges in our StarNet applications include rectification, continuum normalization, and wavelength coverage. Here with present preliminary results on the impact of imperfect continuum rectification when compared to normalized synthetic data. Solutions to these problems will contribute to efficient spectroscopic surveys, their data reduction pipelines, and the precision in their post-data pro
机译:在一个时代,当光谱调查能够收集数十万恒星的光谱,需要快速高效的分析方法来最大化科学影响。这些调查提供了一个非常适合机器学习应用的恒星光谱数据库。一个这样的应用,Starnet是一种卷积神经网络,其开发出从SDSS-III Apogee和合成恒星光谱中获得恒星标签(温度,表面重力和金属性)。在观察到或合成光谱上培训时,它在多种信噪比上显示出优异的精度和精度。尽管使用高分辨率(R〜20,000)的Apogee谱和相应的资产合成网格开发了Starnet,但我们建议该技术适用于其他光谱分辨率,光谱调查和波长制度。作为演示,我们介绍了在较低分辨率下培训的Starnet版本,R = 6000,资产合成谱。选择该分辨率被选为Gemini / NIFS和即将到来的Gemini / Girmos仪器提供的光谱。结果表明,从该中分辨率的Starnet版本确定的恒星参数可以精确地与高分辨率的APOGEE结果相当。这种成功可归因于(1)具有优先术恒星标签的大型培训综合谱(N〜200,000),以及(2)在解决方案中使用整个光谱而不是一些加权窗口,这是常见的在其他自动化光谱分析方法(例如FERRE)中。我们的Starnet应用程序中的剩余挑战包括整流,连续归一化和波长覆盖率。与标准化合成数据相比,这里有目前的初步结果对不完美连续核整流的影响。这些问题的解决方案将有助于有效的光谱调查,其数据减少管道以及其后数据专业的精度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号