首页> 外文会议>Materials Research Society Meeting >Percolation and Electrical Conductivity Modeling of Novel Microstructured Insulator-Conductor Nanocomposites Fabricated from PMMA and ATO
【24h】

Percolation and Electrical Conductivity Modeling of Novel Microstructured Insulator-Conductor Nanocomposites Fabricated from PMMA and ATO

机译:PMMA和ATO制造的新型微观结构绝缘导体纳米复合材料的渗透和电导率建模

获取原文

摘要

The electrical conductivity of insulating polymer matrix composites undergoes radical increase at a certain concentration of conductive filler, which is known as the percolation threshold. Polymer matrix conductive nanocomposites were fabricated by compression molding the mechanically mixed poly (methyl methacrylate) (PMMA) and antimony tin oxide (ATO) nanoparticles, as has been done with other polymer composites before. The electrical conductivity of PMMA/ATO nanocomposites increased by several orders of magnitude at a small concentration of ATO (~ 0.27 vol %). The continuous 3D network like distribution of ATO nanoparticles contributed to this percolation at subcritical filler concentrations. The effects of processing parameters on these unique microstructures and electrical properties were investigated. The tetrakaidecahedron-like microstructure was observed by scanning electron microscopy (SEM) and was found to be affected by the molding pressure, temperature and amount of nanoparticles. The viscoelastic flow of matrix under the optimum processing conditions allowed the shape transformation of PMMA into space filling polyhedra and an ordered distribution of ATO nanoparticles along the sharp edges of the PMMA. Parametric finite element analysis was performed to model this unique microstructure-driven percolation. The 2D simplified model was generated in AC/DC frequency domain mode in COMSOL Multiphysics to solve the effects of ordered distribution of conductive nanoparticles on the electrical properties of the composite. There was excellent agreement between experimental and simulated values of electrical conductivity and percolation concentration. This model can be used to predict percolation threshold and electrical properties for any types of composite systems containing insulating matrix and conductive fillers that can form this unique microstructure.
机译:绝缘聚合物基质复合材料的导电性在一定浓度的导电填料处经历自由基,称为渗透阈值。通过压缩模塑机械混合的聚(甲基丙烯酸甲酯)(PMMA)和氧化锡(ATO)纳米颗粒,通过以前的其他聚合物复合材料进行压缩成型,制造聚合物基质导电纳米复合材料。 PMMA / ATO纳米复合材料的电导率以小浓度的ATO(〜0.27体积%)增加了几个数量级。诸如ATO纳米颗粒的分布的连续3D网络有助于在亚临界填充物浓度下的这种渗透。研究了处理参数对这些独特的微观结构和电性能的影响。通过扫描电子显微镜(SEM)观察到右警察用的微观结构,并发现受纳米颗粒的模塑压力,温度和量的影响。在最佳处理条件下,基质的粘弹性流动使PMMA的形状变换为空间填充多面体和沿PMMA的尖锐边缘的ATO纳米颗粒的有序分布。进行参数有限元分析以模拟这种独特的微观结构驱动的渗流。在COMSOL多发性中的AC / DC频域模式中产生了2D简化模型,以解决导电纳米颗粒的有序分布对复合材料电性能的影响。在电导率和渗透浓度的实验和模拟值之间存在良好的一致性。该模型可用于预测含有绝缘基质和导电填料的任何类型的复合系统的渗透阈值和电性能,其可以形成这种独特的微观结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号