首页> 外文会议>Materials Research Society Meeting >Multiscale modeling of organic-inorganic interface: From molecular dynamics simulation to finite element modeling
【24h】

Multiscale modeling of organic-inorganic interface: From molecular dynamics simulation to finite element modeling

机译:有机无机界面的多尺度建模:从分子动力学模拟到有限元建模

获取原文

摘要

Bi-layer material systems are found in various engineering applications ranging from nanoscale components, such as thin films in circuit boards, to macroscale structures, such as adhesive bonding in aerospace and civil infrastructure. They are also found in many natural and biological materials such as nacre or bone. The structural integrity of a bi-layer system depends on properties of both the interface and the constitutive materials. In particular, interfacial delamination has been observed as a major integrity issue. Here we present a multiscale model, which can predict the macroscale structural behavior at the interface between organic and inorganic materials, based on a molecular dynamics (MD) simulation approach combined with the metadynamics method used to reconstruct the free energy surface (FES) between attached and detached states of the bonded system. We apply this technique to model an epoxy-silica system that primarily features non-bonded and non-directional van der Waals and Coulombic interactions. The reconstructed FES of the epoxy-silica system derived from the molecular level is used to quantify the traction-separation relation at epoxy-silica interface. In this paper, two different approaches in deriving the traction-separation relation based on the reconstructed FES are described. With the derived traction-separation relation, a finite element approach using cohesive zone model (CZM) can be implemented such that the structural behavior of epoxy-silica interface at the macroscopic length scale can be predicted. The prediction from our multiscale model shows a good agreement with experimental data of the interfacial fracture toughness. The method used here provides a powerful new approach to link nano to macro for complex heterogeneous material systems.
机译:在各种工程应用中,在各种工程应用中发现了从纳米级部件,例如电路板中的薄膜,宏观结构,例如航空航天和民用基础设施中的粘合剂结构。它们也被发现在许多天然和生物材料,如珍珠或骨。双层系统的结构完整性取决于界面和组成材料的性质。特别是,界面分层被认为是一个主要的完整性问题。在这里,我们提出了一种多尺度模型,其可以基于分子动力学(MD)仿真方法与用于重建附加的自由能表面(FES)的MetAdnamics方法相结合,以预测有机和无机材料之间的界面处的宏观结构行为。和绑定系统的分离国家。我们应用该技术来模拟一种主要具有非粘结和非定向范德瓦尔斯和库仑相互作用的环氧树脂 - 二氧化硅系统。衍生自分子水平的环氧树脂 - 二氧化硅系统的重建FES在环氧树脂界面中量化牵引分离关系。在本文中,描述了基于重建的FES产生牵引分离关系的两种不同方法。利用衍生的牵引分离关系,可以实现使用粘性区模型(CZM)的有限元方法,使得可以预测宏观长度尺度处的环氧树脂 - 二氧化硅界面的结构行为。我们多尺度模型的预测显示了与界面裂缝韧性的实验数据吻合良好。这里使用的方法提供了一种强大的新方法,用于将纳米链接到复杂的异构材料系统的宏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号