首页> 外文会议>European Conference Non-Destructive Testing >IMPACT DETECTION IN A COMPOSITE TAIL-BOOM STRUCTURE WITH ULTRASONIC IMAGING - AND GUIDED WAVES TECHNIQUES
【24h】

IMPACT DETECTION IN A COMPOSITE TAIL-BOOM STRUCTURE WITH ULTRASONIC IMAGING - AND GUIDED WAVES TECHNIQUES

机译:具有超声成像的复合尾动结构中的冲击检测 - 引导波技术

获取原文

摘要

Sandwich components with thin skins of GFRP or CFRP and honeycomb cores are high performance components for aerospace structures with high specific stiffness and strength. However these materials are impact sensitive. The DLR part of the EU-project AISHA II (Aircraft integrated structural health assessment) is focused on a full-scale test of a 3.5 m long tail-boom oft the EC 135. This component consists of a honeycomb sandwich structure with thin skins out of CFRP and GFRP layers. For in-field inspections ultrasonic echo-technique has been further developed for one side access. The honeycomb structure only penetrates frequencies below 1 MHz. Therefore a low frequency inspection technique has been developed. The harmonics and the scattering of the material are suppressed on the receiver side by filters. The C-scans clearly show the damaged areas. A scanning technique like ultrasonic imaging is time consuming and therefore expensive. In opposite to longitudinal waves Guided waves provide a global propagation with relatively low attenuation and can easily be excited and received by piezo patches. Such a structural health monitoring system provides in principle a push-bottom inspection. However, Lamb waves are dispersive and for each frequency there are two wave modes in minimum so that the received signals are very complex. In order to get more information about the Lamb wave propagation the wave fields have been scanned using a broadband capacitive sensor as a receiver. The full-wave A-scans are stored in a 3D-file. Out of this data, Lamb wave A-, B-, C- and D-scans and video animations can be calculated. Virtual sensors can be placed in the displayed scanning area and the received signal can be computed. Optimizations of sensor layouts and sensor positions are possible.
机译:具有GFRP或CFRP和蜂窝核心薄皮肤的夹层组分是具有高特定刚度和强度的航空结构的高性能组件。然而,这些材料是影响敏感的。 EU-Project的DLR部分Aisha II(飞机综合结构健康评估)专注于EC 135的3.5米长的尾声臂的全尺度试验。该组件包括蜂窝夹层结构,薄皮CFRP和GFRP层。对于现场检查,已经进一步开发了超声回波技术,用于一侧接入。蜂窝结构仅渗透到1 MHz以下的频率。因此,已经开发出低频检测技术。通过滤波器在接收器侧抑制了材料的谐波和散射。 C扫描清楚地显示了受损区域。超声成像等扫描技术是耗时,因此昂贵。在与纵向波的相对相对中,引导波提供具有相对较低的衰减的全局传播,并且可以通过压电贴片容易地激发和接收。这种结构健康监测系统原则上提供了推动底部检查。然而,LAMB波是分散的,对于每个频率,至少有两个波形模式,使得接收的信号非常复杂。为了获得有关LAMB波传播的更多信息,使用宽带电容传感器作为接收器扫描波场。全波A扫描存储在3D文件中。在此数据中,可以计算羊毛波A-,B-,C和D扫描和视频动画。可以将虚拟传感器放置在显示的扫描区域中,并且可以计算接收信号。可以实现传感器布局和传感器位置的优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号