首页> 外文会议>ASME International Conference on Energy Sustainability >FLUXTRACER - A 3D-PARTITIONING AND RADIANT FLUX COMPUTER TOOL TO ANALYSE THE OPTICAL BEHAVIOUR OF LIGHT COLLECTION AND CONCENTRATION SUBSYSTEMS USING HIGH PERFORMANCE COMPUTERS
【24h】

FLUXTRACER - A 3D-PARTITIONING AND RADIANT FLUX COMPUTER TOOL TO ANALYSE THE OPTICAL BEHAVIOUR OF LIGHT COLLECTION AND CONCENTRATION SUBSYSTEMS USING HIGH PERFORMANCE COMPUTERS

机译:Fluxtracer - 一种3D分区和辐射助焊剂计算机工具,用于使用高性能计算机分析光收集和集中子系统的光学行为

获取原文

摘要

The light collection and concentration subsystem (LCCS) of any concentrating solar thermal (CST) system is composed of the surfaces that collect and concentrate the sunlight and of the input surfaces of the receivers, or receivers' envelopes, where the light is concentrated. For all commercial CST technologies the LCCS is, together with the power block, the subsystem that has more influence in the overall performance and cost. Thus, its optimization is critical to increase the cost-competitiveness of these systems. This optimization requires, in many cases, the optimization of the position, geometry and size of a very large number of solar collecting and concentrating surfaces as well as the optimization of the shape and size of the input surfaces of the receivers where the sunlight is concentrated. Because a full optimization requires the exploration of a configuration space with a very large number of dimensions, the traditional approach consist in making many initial assumptions to drastically reduce the number of dimensions of the configuration space to a handful, so that the optimization can be carried out using conventional high-end workstations in a matter of hours. However, to achieve relevant breakthroughs and to substantially increase the cost-competitiveness of CST systems a bolder approach is needed, where sophisticated design and analysis tools, engineered from the start to be used in High Performance Computers (HPC), will be combined with sophisticated optimization strategies targeted to explore and find optimal solutions in very high dimensional configuration spaces. This paper presents the first of a series of such design and analysis tools. The tool, call FluxTracer, partitions the three-dimensional space in which the LCC subsystem under analysis is immersed into volumetric pixels (voxels) and computes the radiant energy flux that traverses each voxel as a function of time. It integrates the energy density in every voxel overtime, providing detailed information regarding how the radiant energy flows in space in a given LCC subsystem and in a given period of time. This information is the cornerstone of the highly sophisticated computational LCC subsystem optimization framework The Cyprus Institute (CYI) is developing, in collaboration with the Australian National University (ANU), targeted to be used in HPC's.
机译:任何集中太阳能热(CST)系统的光收集和浓缩子系统(LCCS)由收集和集中阳光的表面和接收器的输入表面,或接收器的信封的表面组成,或者接收器的信封。对于所有商业CST技术,LCC与电源块一起具有更多影响整体性能和成本的子系统。因此,其优化对于提高这些系统的成本竞争力至关重要。在许多情况下,该优化需要优化大量太阳能收集和集中表面的位置,几何形状和尺寸以及阳光集中的接收器的输入表面的形状和尺寸的优化。因为完整的优化需要探索具有大量维度的配置空间,所以传统方法在制作许多初始假设中,使得大大减少配置空间的尺寸的数量,以便可以携带优化在几小时内使用传统的高端工作站。然而,为了实现相关的突破并大大提高CST系统的成本竞争力,需要一个更大胆的方法,其中从开始在高性能计算机(HPC)中工程的复杂的设计和分析工具,将与复杂相结合优化策略探讨并在非常高的维度配置空间中找到最佳解决方案。本文介绍了一系列这种设计和分析工具的第一系列。该工具,呼叫浮总验器,将在分析的LCC子系统浸入体积像素(体素)中来分区三维空间,并计算作为时间函数的辐射每个体素的辐射能量通量。它将每个体素的能量密度集成在一起,提供关于如何在给定的LCC子系统中的空间中的辐射能量和给定的时间段内的空间中的详细信息。该信息是塞浦路斯研究所(Cyi)的高度复杂计算LCC子系统优化框架的基石,与澳大利亚国立大学(ANU)合作,有针对性的人在HPC中使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号