首页> 外文会议>SAE International Powertrains, Fuels and Lubricants Meeting >Detonation Peninsula for TRF-Air Mixtures: Assessment for the Analysis of Auto-Ignition Events in Spark-Ignition Engines
【24h】

Detonation Peninsula for TRF-Air Mixtures: Assessment for the Analysis of Auto-Ignition Events in Spark-Ignition Engines

机译:TRF-AIR混合物的爆炸半岛:用于分析火花点火发动机的自动点火事件的评估

获取原文

摘要

Controlling abnormal auto-ignition processes in spark-ignition engines requires understanding how auto-ignition is triggered and how it propagates inside the combustion chamber. The original Zeldovich theory regarding auto-ignition propagation was further developed by Bradley and coworkers, who highlighted different modes by considering various hot spot characteristics and thermodynamic conditions around them. Dimensionless parameters (ε, ξ) were then proposed to classify these modes and to define a detonation peninsula for H2-CO-air mixtures. This article deals with numerical simulations undertaken to check the relevancy of this original detonation peninsula when considering realistic gasoline fuels. 1D calculations of auto-ignition propagation are performed using the Tabulated Kinetics for Ignition model. Chemical kinetics calculations are first carried out to build the needed look-up table for the auto-ignition delay time τi, and the excitation times τe of E10-air mixtures using a RON 95 TRF surrogate. The dimensionless parameter ε is based on the hot spot radius and on the excitation time τe of the fuel. Previous chemical kinetics calculations confirm the impact of the fuel on this parameter as H2-CO-air mixtures feature much longer excitation times than TRF-air mixtures. Focusing on the parameter ξ, its estimation depends on hot spots characteristics and thermodynamic conditions. The limits of the peninsula therefore vary depending on initial conditions and hot spot characteristics, that is why this paper focuses on several conditions to validate the dependency of the boundaries between the different auto-ignition modes. Hundreds of simulations are performed and due to the large amount of calculations, a specific post-processing methodology is defined to determine the auto-ignition propagation modes by automatically characterizing the coupling conditions between reaction and pressure waves. Several new detonation peninsulas are finally proposed depending on initial conditions in terms of temperature, pressure, fuel-air equivalence ratio and dilution. Limits of the detonation peninsula for TRF-air mixtures are more affected depending on each operating conditions. These new limits can finally be used to better understand abnormal auto-ignition events in spark-ignition engines.
机译:控制火花点火发动机中的异常自动点火过程需要了解如何触发自动点火以及如何在燃烧室内传播。关于自动点火传播的原始塞尔多维奇理论是由布拉德利和同事开发的,通过考虑它们周围的各种热点特性和热力学条件,突出了不同的模式。然后提出无量纲参数(ε,ξ)以分类这些模式,并为H2-CO-AIR混合物定义爆炸半岛。本文涉及在考虑现实汽油燃料时检查该原始爆炸半岛的相关性的数值模拟。使用针对点火模型的标记动力学进行自动点火传播的1D计算。首先进行化学动力学计算,以构建用于自动点火延迟时间τi的所需查找表,以及使用RON 95 TRF代理的E10-AIR混合物的激发时间τe。无量纲参数ε基于热点半径和燃料的激发时间τe。以前的化学动力学计算确认燃料对该参数的影响,因为H2-CO-AIR混合物具有比TRF空气混合物更长的激发时间。专注于参数ξ,其估计取决于热点特性和热力学条件。因此,半岛的极限因初始条件和热点特征而异,这就是本文重点介绍了若干条件以验证不同自动点火模式之间边界的依赖性的原因。执行数百个模拟,并且由于大量计算,通过自动表征反应和压力波之间的耦合条件来定义特定的后处理方法来确定自动点火传播模式。最终提出了几种新的爆炸半岛,根据温度,压力,燃料空气等效率和稀释而初始条件提出。对于TRF-空气混合物的爆炸半岛的限制,根据每个操作条件更加受影响。这些新限制最终可以用于更好地了解火花点火发动机中的异常自燃事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号