首页> 外文会议>ASME Fluids Engineering Division conference >FLUID-ACOUSTICS INTERACTION IN SELF-SUSTAINED OSCILLATIONS OVER A CAVITY IN A TURBULENT BOUNDARY LAYER
【24h】

FLUID-ACOUSTICS INTERACTION IN SELF-SUSTAINED OSCILLATIONS OVER A CAVITY IN A TURBULENT BOUNDARY LAYER

机译:流体声学在湍流边界层中的空腔上的自持振荡中的相互作用

获取原文

摘要

Self-sustained oscillations with fluid-acoustics interaction over a cavity can radiate intense tonal sound and fatigue nearby components of industrial products. The prediction and the suppression of these oscillations are very important for many practical applications. However, the fluid-acoustics interaction has not been thoroughly clarified in particular for the oscillations in turbulent flows. We investigate the mechanism of the oscillations over a rectangular cavity with a length-to-depth ratio of 2:1 by directly solving the compressible Navier-Stokes equations. The boundary layer over the cavity is turbulent and the freestream Mach numbers are M = 0.4 and 0.7. The results clarify that the self-sustained oscillations occur in the shear layer of the cavity and the oscillations are reinforced by the streamwise acoustic mode in the cavity for both Mach numbers. The shear layer of the cavity undulates. This undulation causes the deformation of fine vortices in the shear layer and radiates acoustic waves from the downstream edge of the cavity. Also, we clarify by the conditional identification of longitudinal vortices that the acoustic waves cause the undulation of the shear layer and a feedback loop is formed. Moreover, the comparison of the flow field over the cavity with that over a simple backstep shows that the shear layer in the cavity becomes two-dimensional by the acoustic feedback. Finally, we show that the oscillations become weaker particularly at M = 0.4 and the frequencies of the oscillations become lower as the boundary layer thickness at the upstream edge of the cavity increases. Considering this effect of the boundary layer thickness, the peak frequencies predicted by our computations are in good agreement with those measured in a past experiment.
机译:通过腔体的流体声学相互作用的自持续振荡可以辐射强烈的温度和工业产品附近的疲劳。对于许多实际应用,这些振荡的预测和抑制非常重要。然而,流体声学相互作用尤其没有彻底阐明湍流流动中的振荡。通过直接求解可压缩的Navier-Stokes方程,我们在长度到深度比为2:1的矩形腔体中调查振动的机理。腔体上的边界层是湍流的,并且自由流马赫数为m = 0.4和0.7。结果阐明了在腔的剪切层中发生的自持续振荡,并且振荡被用于两个马赫数的空腔中的流动声模式加强。腔的剪切层波动。这种波动导致剪切层中的细涡流的变形,并从腔的下游边缘辐射声波。而且,我们通过条件识别声波导致剪切层的波动和反馈回路的纵向涡旋的条件识别。此外,通过简单的Backstep在空腔上对流场的比较表明,腔中的剪切层通过声反馈变为二维。最后,我们表明振荡尤其在m = 0.4处变弱,并且随着腔的上游边缘的边界层厚度增加,振荡的频率变得越来越低。考虑到边界层厚度的这种效果,我们的计算预测的峰值频率与在过去的实验中测量的那些吻合良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号