首页> 外文会议>Kuwait International Petroleum Conference and Exhibition >Efficient Polynomial Chaos Proxy-based History Matching and Uncertainty Quantification for Complex Geological Structures
【24h】

Efficient Polynomial Chaos Proxy-based History Matching and Uncertainty Quantification for Complex Geological Structures

机译:基于高效的多项式混沌代理历史匹配和复杂地质结构的不确定性量化

获取原文

摘要

The purpose of history matching is to achieve geological realizations calibrated to the historical performance of the reservoir. For complex geological structures it is usually intractable to run tens of thousands of full reservoir simulation to trace the most probable geological model. Hence the inadequacy of the history-matching results frequently leads to poor estimation of the true model and high uncertainty in production forecasting. Reduced-order modeling procedures, which have been applied in many application areas including reservoir simulation, represent a promising means for constructing efficient surrogate models. Nonlinear dimensionality reduction techniques allow for encapsulating the high-resolution complex geological description of reservoir into a low-dimensional subspace, which significantly reduces number of unknowns and provides an efficient way to construct a proxy model based on the the reduced-dimension parameters. Polynomial Chaos Expansions (PCE) is a powerful tool to quantify uncertainty in dynamical system when there is probabilistic uncertainty in the system parameters. In reservoir simulation it has been shown to be more accurate and efficient compared to traditional experimental design (ED). PCEs have a significant advantage over other response surfaces as the convergence to the true probability distribution is proved when the order of the PCE is increased. Accordingly PCE proxy can be used as the pseudo-simulator to represent the surface responses of the uncertain variables. When the objective and constraints of a reservoir model is described by multivariate polynomial functions, there are very efficient algorithms to compute the global solutions. We have developed a workflow at which incorporates PCE to find the global minimum of the misfit surface and assess the uncertainty associated with. The accuracy of the PCE proxy increases with the additional trial runs of the reservoir simulator. We conduct a two dimensional synthetic case study of a fluvial channel as well as a real field example to demonstrate the effectiveness of this approach. Kernel Principal Component Analysis (KPCA) is used to parameterize the complex geological structure. The study has revealed useful reservoir information and delivered more reliable production forecasts. PCE-based history match enhances the quality and efficiency of the estimation of the most probable geological model and improve the confidence interval of production forecasts.
机译:历史匹配的目的是实现校准储层历史表现的地质改革。对于复杂的地质结构,通常难以运行成千上万的全储层模拟以追踪最可能的地质模型。因此,历史匹配结果的不足程度经常导致对真实模型的估计和生产预测中的高不确定性差。已经在许多应用领域应用的减少阶建模程序代表了构建高效代理模型的有希望的意义手段。非线性降维的技术允许用于封装容器的高分辨率复杂地质描述成低维子空间,从而减少了显著未知数的数目,并提供一种有效的方法来构造基于所述尺寸减小的参数的代理模型。多项式混沌扩展(PCE)是一种强大的工具,可以在系统参数存在概率的不确定性时量化动态系统中的不确定性。与传统的实验设计(ED)相比,储层模拟中,它已被证明更准确和高效。 PCE在其他响应表面上具有显着的优势,因为当PCE的顺序增加时证明了真正概率分布的收敛。因此,PCE代理可以用作伪模拟器以表示不确定变量的表面响应。当通过多变量多项式函数描述储层模型的目标和约束时,存在非常有效的算法来计算全局解决方案。我们开发了一个工作流程,其中包含PCE,以查找不确定表面的全局最小值,并评估与之相关的不确定性。 PCE代理的准确性随着储存器模拟器的额外试运行而增加。我们进行河流通道的二维综合性案例研究以及真实的实地示例以证明这种方法的有效性。内核主成分分析(KPCA)用于参数化复杂地质结构。该研究揭示了有用的水库信息,并提供了更可靠的生产预测。基于PCE的历史匹配提高了估计最可能的地质模型的质量和效率,提高了生产预测的置信区间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号