首页> 外文会议>Society of Plastics Engineers Annual Technical Conference and Exhibition >Investigation of Stress-Dependent Fracture Permeability in Naturally Fractured Reservoirs Using a Fully Coupled Poroelastic Displacement Discontinuity Model
【24h】

Investigation of Stress-Dependent Fracture Permeability in Naturally Fractured Reservoirs Using a Fully Coupled Poroelastic Displacement Discontinuity Model

机译:使用完全耦合的孔弹性位移不连续模型对天然裂缝储层中应激依赖性骨折渗透性的研究

获取原文

摘要

Fractures are the main channels of production/injection in naturally fractured reservoirs; therefore the fracture permeability is a key parameter to production optimization and reservoir management. Pressure depletion in naturally fractured reservoirs can result in effective stress change that, in turn, can change fracture permeability. We apply a fully coupled poroelastic displacement discontinuity method to model the fracture permeability change during production in naturally fractured reservoirs. The fully coupled poroelastic displacement discontinuity method employs a boundary element displacement discontinuity model for the behavior of rock discontinuities and fractures under changes in stress from pore pressure variations due to fluid flow in both the matrix and fractures. The nonlinear Barton-Bandis joint mechanical medel is applied to represent the fracture deformation including normal and shear deformation. Sensitivity studies using the numerical model show that fracture permeability decreases with pressure depletion during production in fractured reservoirs under isotropic stress conditions. However, in critical stress conditions the fracture permeability may increase with pressure depletion during production because of the fracture dilation caused by fracture slide, which may explain near well permeability improvement observed in shale gas reservoirs. Simulations of pressure transient behavior show that behavior characteristic of stress dependent fracture permeability can be identified in conventional pressure buildup data, and over a longer time frame the model can be used for production data analysis. Matching with field data enables quantification of external stress contrast and fracture stiffness, and the result can provide a more rigorous forecast of production decline and primary oil or gas recovery efficiency for wells in naturally fractured reservoirs.
机译:骨折是天然骨折储层生产/注射的主要通道;因此,裂缝渗透率是生产优化和储层管理的关键参数。在天然裂缝储层中的压力消耗可能导致有效的应力变化,又可以改变骨折渗透性。我们采用完全耦合的孔弹性位移不连续性,以模拟在天然裂缝储层生产过程中的裂缝渗透性变化。完全耦合的孔弹性位移不连续方法采用边界元素位移不连续模型,用于在孔隙压力变化的压力变化下的岩石不连续性和裂缝的行为,由于基质和裂缝中的流体流动。施加非线性巴顿 - 带式接头机械挤压物代表骨折变形,包括正常和剪切变形。使用数值模型的敏感性研究表明,在各向同性胁迫条件下,在裂缝储存器中生产过程中的裂缝渗透率随压力耗尽。然而,在临界应激条件下,由于裂缝载玻片引起的裂缝扩张,在生产过程中,断裂渗透性可能会随着压力耗尽而增加,这可以在页岩气藏中观察到的孔渗透性改善附近。压力瞬变行为的仿真表明,可以在常规压力积累数据中识别应力依赖性骨折渗透性的行为特征,并且在较长的时间内框架可以用于生产数据分析。与现场数据的匹配使得能够量化外部应力对比和断裂刚度,结果可以为自然碎屑储层提供更严格的生产下降和初级油或气体回收效率的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号