首页> 外文会议>溶接学会全国大会 >MICROSTRUCTURE EVOLUTION DURING FRICTION-STIR WELDING OF Cu-30Zn BRASS
【24h】

MICROSTRUCTURE EVOLUTION DURING FRICTION-STIR WELDING OF Cu-30Zn BRASS

机译:Cu-30zn黄铜摩擦搅拌焊接过程中的微观结构演变

获取原文
获取外文期刊封面目录资料

摘要

The triumph of friction stir welding (FSW) technology during the last decade gave rise to significantinterest to the underlying physical processes. Accordingly, microstructural and textural studies are nowone of the research hotspots in the FSW field [1]. To date, the microstructural examinations in this areawere mainly focused in aluminum alloys, i.e. materials with high stacking fault energy. The graindevelopment process in this case was found to be primarily governed by continuous recrystallization [e.g.2, 3], which typically involved transformation of low-angle boundaries (LABs) into high-angle boundaries(HABs)[4]. Recently, FSW has been also successfully applied for joining of austenitic steels [5] and Cu-30Znbrass [6], i.e. the materials with low stacking fault energy. In these alloys, dislocation mobility is relativelylow and thus the development of dislocation boundaries is difficu as a result, the continuousrecrystallization should be inhibited. On the other hand, high density of free dislocations should providelarge driving force for discontinuous recrystallization. Therefore, this mechanism is expected topredominate during FSW. To examine this idea, microstructural evolution during FSW of Cu-30Zn brasswas systematically studied in this work.
机译:在过去十年中,摩擦搅拌焊接(FSW)技术的胜利产生了对潜在的物理过程的显着内部。因此,根据FSW字段中的研究热点是显眼的微观结构和纹理研究[1]。迄今为止,该面积的微观结构考试主要集中在铝合金中,即具有高堆叠故障能量的材料。发现这种情况下的晶体开发过程主要由连续重结晶[E.G.2,3]的控制,该方法通常涉及将低角度边界(实验室)的转化为大角度边界(HABS)[4]。最近,FSW也已成功地应用于奥氏体钢[5]和Cu-30znbrass [6],即具有低堆叠故障能量的材料。在这些合金中,相对脱位流动性相对较差,因此难以脱位边界的发展;结果,应抑制环形晶体化。另一方面,高密度的自由位错应提供用于不连续再结晶的驱动力。因此,在FSW期间预期该机制是颠簸的。为了检查这个想法,在这项工作中系统地研究了Cu-30zn Brasswas的FSW期间的微观结构演变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号