首页> 外文会议>Advanced Maui Optical and Space Surveillance Technologies Conference >On-Orbit Meteor Impact Monitoring Using CubeSat Swarms
【24h】

On-Orbit Meteor Impact Monitoring Using CubeSat Swarms

机译:使用CubeSat群体的轨道流星冲击监测

获取原文

摘要

Meteor impact events such as Chelyabinsk are known to cause catastrophic impacts every few hundred years. The modern-day fallout from such event can cause large loss of life and property. One satellite in Low Earth Orbit (LEO) may get a glimpse of a meteor trail. However, a swarm constellation has the potential of performing persistent, realtime global tracking of an incoming meteor. Developing a swarm constellation using a fleet of large satellites is an expensive endeavor. A cost-effective alternative is to use CubeSats and small-satellites that contain the latest, onboard computers, sensors and communication devices for low-mass and low-volume. Our inspiration for a swarm constellation comes from eusocial insects that are composed of simple individuals, that are decentralized, that operate autonomously using only local sensing and are robust to individual losses. This work illustrates the design of a constellation of large number CubeSats in LEO at altitude of 400 km and higher, referred to as a swarm, in order to monitor the skies above entire North America. Specifically, this work extends the capability of a 3U CubeSat mission known as SWIMSat, by converting it into a swarm, to monitor the region over North America at an altitude of 140 km. The design of a swarm in LEO faces multiple challenges such as the limited field of view of the spacecraft-instrument and resulting observation quality. The design is further complicated by the fact that in order to enable triangulation of the meteor event, the entire region of interest should be observed by at least two nodes. Due to the complicated nature of the problem, an analytical treatment is challenging. This work aims to solve these challenges by the reducing the problem into designing a circular Walker-Delta constellation in LEO, with repeating ground track orbits. The approach employed in the work is as follows: First, an optimal orbit inclination is determined by propagating the orbit forward in time. Here a cost
机译:众所周知,诸如Chelyabinsk等诸如Chelyabinsk的流动影响事件每隔几百年造成灾难性的影响。这种事件的现代辐射可能导致巨大的生命和财产损失。低地球轨道(Leo)的一个卫星可能会瞥见流星踪迹。然而,群体星座具有执行传入流星的持久性实时全局跟踪的潜力。使用大型卫星队伍建立群体星座是昂贵的努力。经济高效的替代方案是使用包含最新,车载计算机,传感器和通信设备的小型卫星,用于低质量和低容量。我们对群体星座的灵感来自于由简单的个人组成的Eusocial昆虫,这些昆虫是分散的,它仅使用本地感测自动操作,并且对个人损失很健康。这项工作说明了在海拔400公里和更高的Leo中的大量立方体星座的设计,称为群体,以监测整个北美的天空。具体而言,这项工作通过将其转化为群体,将其称为Swimsat的3U CubeSat使命的能力扩展到一个群体,以在140公里的海拔地区监测北美地区。 Leo中群的设计面临多种挑战,例如航天器仪器的有限视野,并产生了观察质量。该设计进一步复杂的是,为了能够实现流星事件的三角测量,应通过至少两个节点观察整个感兴趣区域。由于问题的复杂性,分析治疗是挑战性的。这项工作旨在通过将问题减少到设计Leo中的圆形Walker-Delta星座,重复地轨轨道来解决这些挑战。在工作中采用的方法如下:首先,通过及时传播轨道传播轨道来确定最佳轨道倾斜度。这里是一个成本

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号